• Title/Summary/Keyword: tellurite glass

Search Result 17, Processing Time 0.027 seconds

The influence of MgO on the radiation protection and mechanical properties of tellurite glasses

  • Hanfi, M.Y.;Sayyed, M.I.;Lacomme, E.;Akkurt, I.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.2000-2010
    • /
    • 2021
  • Mechanical moduli, such as Young's modulus (E), Bulks modulus (B), Shear modulus (S), longitudinal modulus (L), Poisson's ratio (σ) and micro Hardness (H) were theoretically calculated for (100-x)TeO2+x MgO glasses, where x = 10, 20, 30, 40 and 45 mol%, based on the Makishima-Mackenzie model. The estimated results showed that the mechanical moduli and the microhardness of the glasses were improved with the increase of the MgO contents in the TM glasses, while Poisson's ratio decreased with the increase in MgO content. Moreover, the radiation shielding capacity was evaluated for the studied TM glasses. Thus, the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), transmission factor (TF) and half-value thickness (𝚫0.5) were simulated for gamma photon energies between 0.344 and 1.406 MeV. The simulated results showed that glass TM10 with 10 mol % MgO possess the highest LAC and varied in the range between 0.259 and 0.711 cm-1, while TM45 glass with 45 mol % MgO possess the lowest LAC and vary in the range between 0.223 and 0.587 cm-1 at gamma photon energies between 0.344 and 1.406 MeV. Furthermore, the BXCOM program was applied to calculate the effective atomic number (Zeff), equivalent atomic number (Zeq) and buildup factors (EBF and EABF) of the glasses. The effective removal cross-section for the fast neutrons (ERCSFN, ∑R) was also calculated theoretically. The received data depicts that the lowest ∑R was achieved for TM10 glasses, where ∑R = 0.0193 cm2 g-1, while TM45 possesses the highest ERCSFN where ∑R = 0.0215 cm2 g-1.

Electrical Properties of $LI_2O-V_2O5-TeO_2$ Glasses for Solid State Electrolyte (전해절용 $Li_2O-V_2O_5-TeO_2$ 계 글라스 세라믹스의 전기적 특성)

  • Lee, Chang-Hee;Park, Jae-Hyeon;Son, Myung-Mo;Lee, Hun-Soo;Gu, Hal-Bon;Park, Hee-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.304-304
    • /
    • 2006
  • Ternary tellurite glassy systems ($Li_2O-V_2O_5-TeO_2$) have been synthesised using Vanadium oxide as a network former and Lithium oxide as network modifier. The addition of a metal oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode materials for solid-state batteries. This glass-ceramics crystallized from the $Li_2O-V_2O_5-TeO_2$ system are particularly interesting, because they exhibit high conductivity (up to $5.63{\times}10^{-5}$ S/cm) at room temperature the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric DC conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

Electrical Properties of $Li_2O-V_2O_5-P_2O_5$ Glasses for Solid State Electrolyte (고체전해질용 $Li_2O-V_2O_5-P_2O_5$ 유리의 전기적 특성)

  • Lee, Chang-Hee;Son, Myung-Mo;Lee, Hun-Soo;Gu, Hal-Bon;Park, Hee-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.334-335
    • /
    • 2005
  • Ternary tellurite glassy systems ($Li_2O-V_2O_5-P_2O_5$) have been synthesised using Vanadium oxide as a network former and Lithium oxide as network modifier. The addition of a metal? oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode' materials for solid-state batteries. This glass-ceramics crystallized from the $Li_2O-V_2O_5-P_2O_5$ system are particularly interesting, because they exhibit high conductivity (up to $5.95\times10^{-4}$ S/cm) at room temperature. the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric D.C conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

Additivity Factors Analysis of Compositions in Li2O-TeO2-ZnO Glass System Determined from Mixture Design (혼합물설계법에 의한 Li2O-TeO2-ZnO 유리의 물성에 대한 조성의 가성성인자 분석)

  • Jung, Young-Joon;Lee, Kyu-Ho;Kim, Tae-Ho;Kim, Young-Seok;Na, Young-Hoon;Ryu, Bong-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.617-622
    • /
    • 2008
  • In this study, the additivity factors of compositions to density and glass transition point ($T_g$) in a $xLi_2O-(1-x)[(1-y)TeO_2-yZnO]$ (0$T_g$ was discussed. As a method for predicting the relation between glass structure and ionic conductivity, density was measured by the Archimedes method. The glass transition point was analyzed to predict the relation between ionic conductivity and the bonding energy between alkali ions and non-bridge oxygen (NBO). The relation equations showing the additivity factor of each composition to the two properties are as follows: Density(g/$cm^3$) = $2.441x_1\;+\;5.559x_2\;+\;4.863x_3\;T_g(^{\circ}C)$ = $319x_1\;+\;247x_2\;+\;609x_3\;-\;1950x_1x_3$ ($x_1$ : fraction of $Li_2O$, $x_2$ : fraction of $TeO_2$, $x_3$ : fraction of ZnO) The density decreased as $Li_2O$ content increased. This was attributed to change of the $TeO_2$ structure. From this structural result, the electric conductivity of the glass samples was predicted following the ionic conduction mechanism. Finally, it is expected that electric conductivity will increase as the activation energy for ion movement decreases.

Structural Dependence of Nonlinear Optical Properties in $TeO_2-PbO-GeO_2$ ($TeO_2-PbO-GeO_2$계 유리 내 비선셩 광학 특성의 구조 의존성)

  • Kim, Weon-Hyo;Heo, Jong;Kim, You-Song;Ryou, Sun-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.507-513
    • /
    • 1996
  • Nonlinear optical properties of TeO2-PbO-GeO2 glasses were investigated and their correlation with struc-tural modification was investigated. Third-order nonlinear susceptibility $\chi$, ranged between 5.0$\times$10-13 esu and 10.7$\times$10-13 esu which are approximately 20-40 times larger than that of silica glass. The glass with a composition of 85(80TeO2-20PbO)-15GeO2(mol%) seemed to provide an optimum compromise between $\chi$and the stability against crystallization. Analyses of the Raman spectra suggested that these glasses are mainly composed of [TeO4] tbp, [TeO3]tp and [GeO4] tetrahedral structural units. It was concluded that the positive contribution of Pb2+ with high polarizability to $\chi$ in TeO2-PbO glasses overwhelmed the negative influence due to the structural modification of [TeO4]tbplongrightarrow[TeO3]tp. On the other hand addition of GeO2 in TeO2-PbO-GeO2 glasses resulted in the decrease of $\chi$ values. This behavior was attributed to the formation of [GeO4] polyhedra at the expense of [TeOn] polyhedra and Pb2+ ions which normally sowed a higher contribu-tion to $\chi$ than [GeO4] polyhedra.

  • PDF

Investigating the Leaching Rate of TiTe3O8 Towards a Potential Ceramic Solid Waste Form

  • Noh, Hye Ran;Lee, Dong Woo;Suh, Kyungwon;Lee, Jeongmook;Kim, Tae-Hyeong;Bae, Sang-Eun;Kim, Jong-Yun;Lim, Sang Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.509-516
    • /
    • 2020
  • An important property of glass and ceramic solid waste forms is processability. Tellurite materials with low melting temperatures and high halite solubilities have potential as solid waste forms. Crystalline TiTe3O8 was synthesized through a solid-state reaction between stoichiometric amounts of TiO2 and TeO2 powder. The resultant TiTe3O8 crystal had a three-dimensional (3D) structure consisting of TiO6 octahedra and asymmetric TeO4 seesaw moiety groups. The melting temperature of the TiTe3O8 powder was 820℃, and the constituent TeO2 began to evaporate selectively from TiTe3O8 above around 840℃. The leaching rate, as determined using the modified American Society of Testing and Materials static leach test method, of Ti in the TiTe3O8 crystal was less than the order of 10-4 g·m-2·d-1 at 90℃ for durations of 14 d over a pH range of 2-12. The chemical durability of the TiTe3O8 crystal, even under highly acidic and alkaline conditions, was comparable to that of other well-known Ti-based solid waste forms.