• 제목/요약/키워드: telencephalon

검색결과 25건 처리시간 0.034초

Ginsenoside Rg1 Reduced Spontaneous Epileptiform Discharges and Behavioral Seizure in the Zebrafish

  • Lee, Yun-Kyoung;Park, Eun-Jin;Lee, Sang-Hun;Kim, Yeon-Hwa;Lee, Chang-Joong
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.48-54
    • /
    • 2009
  • Epileptifrom discharges were induced in the telencephalon of the adult zebrafish via perfusion with pentylenetetrazole (PTZ), bicuculline methiodide, kainic acid-treated artificial cerebrospinal fluid (aCSF), and $Mg^{2+}$-free aCSF. Ginseng total saponin [GTS ($50{\mu}g/ml$)] was shown to attenuate the occurrence rate of epilpetiform discharges by 50-75%, compared to the control. Ginsenoside $Rg_1$ ($130{\mu}M$) reduced the epileptiform discharges in the isolated telencephalon and delayed the occurrence of behavioral seizures observed from the adult zebrafish placed in the PTZ (10 mM)-containing aquarium water. However, Re was not effective in the suppression of epileptiform discharges and behavioral seizures. These results indicate that $Rg_1$ may be useful in the control of epileptiform discharges and effective in controlling behavioral seizures, and that the zebrafish can be used as a model animal for the testing of potential anticonvulsant drugs.

march5 Governs the Convergence and Extension Movement for Organization of the Telencephalon and Diencephalon in Zebrafish Embryos

  • Jung, Jangham;Choi, Issac;Ro, Hyunju;Huh, Tae-Lin;Choe, Joonho;Rhee, Myungchull
    • Molecules and Cells
    • /
    • 제43권1호
    • /
    • pp.76-85
    • /
    • 2020
  • MARCH5 is a RING finger E3 ligase involved in mitochondrial integrity, cellular protein homeostasis, and the regulation of mitochondrial fusion and fission. To determine the function of MARCH5 during development, we assessed transcript expression in zebrafish embryos. We found that march5 transcripts were of maternal origin and evenly distributed at the 1-cell stage, except for the mid-blastula transition, with expression predominantly in the developing central nervous system at later stages of embryogenesis. Overexpression of march5 impaired convergent extension movement during gastrulation, resulting in reduced patterning along the dorsoventral axis and alterations in the ventral cell types. Overexpression and knockdown of march5 disrupted the organization of the developing telencephalon and diencephalon. Lastly, we found that the transcription of march5 was tightly regulated by the transcriptional regulators CHOP, C/EBPα, Staf, Znf143a, and Znf76. These results demonstrate the essential role of March5 in the development of zebrafish embryos.

선천성 고혈압 쥐에서 고혈압 지속현상과 중추신경계 노르아드레날린성 신경활성과의 상관성 (Relationship between Maintenance of Hypertension and Central Noradrenergic Nervous System Activity in Spontaneously Hypertensive Rats)

  • 고광호;신재수;김미영
    • 약학회지
    • /
    • 제30권6호
    • /
    • pp.334-342
    • /
    • 1986
  • The relationship between the maintenance of hypertension and the central noradrenergic nervous system activity in spontaneously hypertensive rats (SHR) was studied. The norepinephrine turnover rates in 5 brain areas; telencephalon, hypothalamus/thalamus, midbrain, pons/medulla, cerebellum as a measure of noradrenergic neuronal activity were measured at the ages of 14 weeks in SHR and normotensive Wistar rats. In 14-week old SHR, blood pressure was significantly higher than in normotensive rat, and central norepinephrine turnover rates were significantly greater in telencephalon, hypothalamus/thalamus, midbrain. There were no differences between norepinephrine turnover rates in pons/medulla, cerebellum of SHR and those of normotensive rats.

  • PDF

Identification and Expression Patterns of kif3bz during the Zebrafish Embryonic Development

  • Lee, A-Ram;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • 제13권4호
    • /
    • pp.411-418
    • /
    • 2009
  • We are reporting the identification, expression patterns, and possible biological functions of zebrafish kif3b (kif3bz) encoding 475 amino acids. Kif3Bz contains the kinesin motor domain, catalytic domain, KISc domain, and one single coiled coil domain. Phylogenetic analysis indicates that kif3bz is a highly conserved gene among the tested vertebrates. First of all, both maternal and zygotic messages of kif3bz were evenly distributed in the blastomeres at 2-cell stage. Its ubiquitous expression throughout the blastomeres continued till 40% epiboly. However, kif3bz transcripts became restricted in Kupffer's vesicle at tailbud and 6-somite stages. At 13-somite stage, kif3bz expression pattern became specific to the telencephalon, diencephalon, trigeminal placode, and somites. Such expression patterns were further intensified in the telencephalon, diencephalons, hind brain, pronephric ducts, optic vesicles, and spinal cord neurons in the 23-somite stage embryos, and last till 24 hpf. We discussed possible functions of Kif3Bz related to the vertebrate embryonic development.

The Relationship between Hypertension and Central Serotonergic Nervous System Activity in Spontaneously Hypertensive Rats

  • Kim, Sung-Jin;Ko, Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • 제11권4호
    • /
    • pp.301-307
    • /
    • 1988
  • Relationship between the maintenance of hypertension and central serotonergic nervous system activity in opontaneously hypertensive rats (SHR) was studied. Serotonin turnover-rates were measured in 5 brain areas as an index of serotonergic neuronal activity and compared at the ages of 14 weeks in two types of animals; (1) spontaneously hypertensive rats (SHR) (2) normotensive wistar kyoto rats (WKY). In 14-week old SHR, central serotonin turnover rate was significantly lower in telencephalon, hypothalamus/thalamus and midbrain than normotensive rat, but significantly higher in cerebellum. There were no significant differences between serotonin turnover rate in pons/medulla of SHR and that of normotensive rat. THese data suggest that the abnormally lower turnover rates of serotonin in telencephalon, hypothalamus/thalamus and midbrain may be one of the underlying neuronal factors for manifestation of hypertension in SHR.

  • PDF

Selective Toxicity to Central Serotonergic Nervous System in Prenatally and Postnatally Lead-Exposed Rats

  • 서동욱;정은영;정재훈;신찬영;오우택;고광호
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.335-335
    • /
    • 1994
  • Possibility whether lead ingestion can cause selective toxicity to central serotonergic nervous system in rats was tested. Three groups of wistar rats; 1)Control, 2) Low dose and 3) High dose groups, were prepared. In prenatally lead-exposed rats, until parturition from dams, rat pups were intoxicated via placenta of mother rats having received drinking water containing either 0%(control ), 0.05%(low dose) or 0.2%(high dose) of lead acetate respectively, In postnatally lead-exposed rats, right after parturition from dams rat pups received drinking water containing either 0% (control), 0.05%(low dose) or 0.2%(high dose) of lead acetate. At 2, 4, 6 and 8 weeks of age, tryptophan hydroxylase (TPH) activity and Na$\^$+//K$\^$+/-ATPase activity were measured in 4 areas of rat brain; Telencephalon, Diencephalon, Midbrain and Pons/Medulla. TPH activities were assayed by modified method of Beevers et al. (1983) using L-(5-$^3$H)-tryptophan as substrate. TPH activity was determined as a criterion of lead poisoning to central serotonergic nervous system and Na$\^$+//K$\^$+/-ATPase activity as a criterion of non specific lead poisoning to any kinds of tissues. Selective toxicity of lead poisoning to central serotonergic nervous system was evaluated by the changes of TPH activities without concomitant changes of Na$\^$+//K$\^$+/-ATPase activities. In prenatally lead-exposed rats. this selectivity was found in Telencephalon (2 weeks of age), Diencephalon/Midbrain (2 weeks of age), Midbrain (4 and 6 weeks of age), Pons/Medulla (2, 4 and 6 weeks of age) In rats exposed to low dose of lead and Pons/Medulla (2 weeks of age) to high dose of lead. In postnatal Iy lead-exposed rats, this selectivity was found in Telencephalon (8 weeks of age), Diencephalon(8 weeks of age), Pons/Medulla (6 and 8 weeks of age) in rats exposed to low dose of lead and Pons/Medulla (8 weeks of age) to high dose of lead. These results suggest that lead poisoning may exhibit selective toxicity to central serotonergic nervous system.

  • PDF

Olig2 Transcription Factor in the Developing and Injured Forebrain; Cell Lineage and Glial Development

  • Ono, Katsuhiko;Takebayashi, Hirohide;Ikenaka, Kazuhiro
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.397-401
    • /
    • 2009
  • Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.

레서핀 반복 투여를 통한 제브라피쉬 우울증 모델 (Chronic Reserpine Administration for Depression Modeling in Zebrafish)

  • 김세영;한창수;고영훈;김용구;윤호경;이종하;김수현;이찬희;신철민
    • 생물정신의학
    • /
    • 제30권1호
    • /
    • pp.17-23
    • /
    • 2023
  • Objectives This study aims to develop valid experimental models for depression through chronic reserpine exposure to zebrafish (Danio rerio). Methods The effect of chronic reserpine on zebrafish behavior in the novel tank was examined. Changes of gene expression on telencephalon were also investigated. Results Chronic reserpine (40 mg/L, 7 days) induced overt behavioral effects, but markedly reduced activity, resembling motor retardation in depression. In telencephalon of zebrafish, gene expression associated with monoamine oxidase and norepinephrine transporter was decreased. Expression of serotonin transporter gene was increased. Conclusions Our results show that the pharmacological model of depression in zebrafish can induce not only behavioral changes, but also monoamine changes in the homology of human mood regulation centers.

태서 중추신경계의 Heat Shock Protein 70 분포에 대한 Nicotine 영향 (Immunohistochemical Localization of Heat Shock Protein 70 in the Central Nervous System of Nicotine-treated Rat Embryo)

  • 최병태;강호성
    • 생명과학회지
    • /
    • 제7권4호
    • /
    • pp.276-281
    • /
    • 1997
  • This study was investigated to determine whether nicotine causes the morphological changes and expression of heat shock protein(HSP) 70 in the central nervous system of rat embryo. The pregnant rats were injected s.c. twice daily with 3 mg nicotine per 100g body weight from day 0 to 14 of gestation and embryos were removed on gestation day 15. As morphological changes, retardation of cell proliferaton was observed in the telencephalon of nicotine-treated groups and no changes in the other region were found. Minimal HSP 70 was expressed over chole central nervous system was similar between control and nicotine-treated group, the expression of blood cells in the meinges and chroid plexus was significantly greater in nicotine-treated group than in control.

  • PDF

황점볼락과 조피볼락의 뇌 조직에 분포하는 neuropeptide Y성 물질 (Neuropeptide Y like Substance Distributed in the Brain Tissues of Two Rockfish Species, Sebastes oblongus and S. schlegeli)

  • 손영창;장영진
    • 한국수산과학회지
    • /
    • 제28권4호
    • /
    • pp.383-391
    • /
    • 1995
  • 출산 전후의 황점볼락 및 조피볼락 어미의 뇌 조직에서 GtH 분비를 자극하는 신경호르몬으로 알려진 NPY를 검출하기 위해, 면역조직화학을 실시하고 뇌하수체내 GtH 분비세포의 활성을 서로 비교하였다. 두 어종 모두에서 뇌 조직중 NPY 양성반응을 나타내는 세포는 후각망울, 종뇌 및 중뇌에서, 신경섬유는 후각망울, 종뇌, 시각신경, 시상하부, 중뇌 및 시각엽에서 각각 관찰되었다. 뇌하수체내에서 NPY 양성반응을 나타내는 신경섬유는 성숙에 관계없이 두 어종 모두 앞원위부분의 AF 음성세포에 인접한 신경엽에 분포하였고, 성장 및 성숙기의 난모세포를 가진 어체에서는 앞원위부분의 신경엽과 중간원위부분의 GtH 분비세포에 인접한 신경엽에서 관찰되었다. 뇌하수체내의 GtH 분비세포는 출산전의 황점볼락 및 성숙기의 조피볼락 개체에서는 AF 염색성이 약했으나, 출산후 황점볼락 및 조피볼락의 GtH 분비세포는 출산전 및 성숙기에 비해 AF 염색성이 증가하였다. 두 어종에서 출산전 난소를 가진 개체들의 GtH 분비세포와 핵경의 크기는 출산후(황점볼락)이거나 출산 이후 휴지기의 난소를 가진 개체(조피볼락) 보다 유의하게 컸다(P<0.01).

  • PDF