DOI QR코드

DOI QR Code

Olig2 Transcription Factor in the Developing and Injured Forebrain; Cell Lineage and Glial Development

  • Ono, Katsuhiko (Department of Biology, Kyoto Prefectural University of Medicine) ;
  • Takebayashi, Hirohide (Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences) ;
  • Ikenaka, Kazuhiro (Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences)
  • Received : 2009.03.16
  • Accepted : 2009.03.19
  • Published : 2009.04.30

Abstract

Olig2 transcription factor is widely expressed throughout the central nervous system; therefore, it is considered to have multiple functions in the developing, mature and injured brain. In this mini-review, we focus on Olig2 in the forebrain (telencephalon and diencephalon) and discuss the functional significance of Olig2 and the differentiation properties of Olig2-expressing progenitors in the development and injured states. Short- and long-term lineage analysis in the developing forebrain elucidated that not all late Olig2+ cells are direct cohorts of early cells and that Olig2 lineage cells differentiate into neurons or glial cells in a region- and stage-dependent manner. Olig2-deficient mice revealed large elimination of oligodendrocyte precursor cells and a decreased number of astrocyte progenitors in the dorsal cortex, whereas no reduction in the number of GABAergic neurons. In addition to Olig2 function in the developing cortex, Olig2 is also reported to be important for glial scar formation after injury. Thus, Olig2 can be essential for glial differentiation during development and after injury.

Keywords

Acknowledgement

Supported by : MEXT, JSPS

References

  1. Anderson, S.A., Eisenstat, D.D., Shi, L., and Rubenstein, J.L. (1997). Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474-476 https://doi.org/10.1126/science.278.5337.474
  2. Buffo, A., Vosko, M.R., Erturk, D., Hamann, G.F., Jucker, M., Rowitch, D., and Gotz, M. (2005). Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl. Acad. Sci. USA 102, 18183-18188 https://doi.org/10.1073/pnas.0506535102
  3. Cai, J., Chen, Y., Cai, W.-H., Hurlock, E.C., Wu, H., Kernie, S.G., Parada, L.F., and Lu, Q.R. (2007). A crucial role for Olig2 in white matter astrocyte development. Development 134, 1887-1899 https://doi.org/10.1242/dev.02847
  4. Chen, Y., Miles, D.K., Hoang, T.-N., Shi, J., Hurlock, E., Kernie, S., and Lu, Q.R. (2008). The basic helix-loop-helix transcription factor Olig2 is critical for reactive astrocyte proliferation after cortical injury. J. Neurosci. 28, 10983-10989 https://doi.org/10.1523/JNEUROSCI.3545-08.2008
  5. Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H., and Gotz, M. (2008). Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 28, 10434-10442 https://doi.org/10.1523/JNEUROSCI.2831-08.2008
  6. Fogarty, M., Grist, M., Gelman, D., Marin, O., Pachnis, V., and Kessaris, N. (2007). Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J. Neurosci. 27, 10935-10946 https://doi.org/10.1523/JNEUROSCI.1629-07.2007
  7. Furusho, M., Ono, K., Takebayashi, H., Masahira, N., Kagawa, T., Ikeda, K., and Ikenaka K. (2006). Involvement of the Olig2 tran scription factor in cholinergic neuron development of the basal forebrain. Dev. Biol. 293, 348-357 https://doi.org/10.1016/j.ydbio.2006.01.031
  8. Islam, M.S., Tatsumi, K., Okuda, H., Shiosaka, S., and Wanaka, A. (2009). Olig2-expressing progenitor cells preferentially differenttiate into oligodendrocytes in cuprizone-induced demyelinated lesions. Neurochem. Int. 54, 192-198 https://doi.org/10.1016/j.neuint.2008.10.011
  9. Ivanova, A., Nakahira, E., Kagawa, T., Oba, A.,, Wada, T., Takebayashi, H., Spassky, N., Levine, J., Zalc, B., and Ikenaka, K. (2003). Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse. J. Neurosci. Res. 73, 581-592 https://doi.org/10.1002/jnr.10717
  10. Kessaris, N., Fogarty, M., Iannarelli, P., Grist, M., Wegner, M., and Richardson, W.D. (2006). Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173-179 https://doi.org/10.1038/nn1620
  11. Levine, J.M., Reynolds, R., and Fawcett, J.W. (2001). The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 24, 39-47 https://doi.org/10.1016/S0166-2236(00)01691-X
  12. Levison, S.W., and Goldman, J.E. (1993). Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201-212 https://doi.org/10.1016/0896-6273(93)90311-E
  13. Ligon, K.L., Kesari, S., Kitada, M., Sun, T., Arnett, H.A., Alberta, J.A., Anderson, D.J., Stiles, C.D., and Rowitch, D.H. (2006). Development of G2 neural progenitor cells requires Olig gene function. Proc. Natl. Acad. Sci. USA 103, 7853-7858 https://doi.org/10.1073/pnas.0511001103
  14. Ligon, K.L., Huillard, E., Mehta, S., Kesari, S., Liu, H., Alberta, J.A., Bachoo, R.M., Kane, M., Louis, D.N., DePinho, R.A., et al. (2007). Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53, 503-517 https://doi.org/10.1016/j.neuron.2007.01.009
  15. Lu, Q.R., Yuk, D., Alberta, J.A., Zhu, Z., Pawlitzky, I., Chan, J., McMahon, A.P., Stiles, C.D., and Rowitch, D.H. (2000). Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317-329 https://doi.org/10.1016/S0896-6273(00)80897-1
  16. Lu, Q.R., Sun, T., Zhu, Z., Ma, N., Garcia, M., Stiles, C.D., and Rowitch, D.H. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75-86 https://doi.org/10.1016/S0092-8674(02)00678-5
  17. Lytle, J.M., Chittajallu, R., Wrathall, J.R., and Gallo, V. (2009). NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury. Glia 57, 270-825 https://doi.org/10.1002/glia.20755
  18. Marshall, C.A., Novitch, B.G., and Goldman, J.E. (2005). Olig2 directs astrocyte and oligodendrocyte formation in postnatal subVZ cells. J. Neurosci. 25, 7289-7298 https://doi.org/10.1523/JNEUROSCI.1924-05.2005
  19. Marti, E., Takada, R., Bumcrot, D.A., Sasaki, H., and McMahon, A.P. (1995). Distribution of sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537-2547
  20. Masahira, N., Takebayashi, H., Ono, K., Watanabe, K., Ding, L., Furusho, M., Ogawa, Y., Nabeshima, Y., Alvarez-Buylla, A., Shimizu, K., et al. (2006). Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev. Biol. 293, 358-269 https://doi.org/10.1016/j.ydbio.2006.02.029
  21. Miyoshi, G., Gutt, S.J., Takebayashi, H., and Fishell, G. (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786-7798 https://doi.org/10.1523/JNEUROSCI.1807-07.2007
  22. Mukouyama, Y., Deneen, B., Lukaszewicz, A., Novitch, B.G., Wichterle, H., Jessell, T.M., and Anderson, D.J. (2006). Olig2+ neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo. Proc. Natl. Acad. Sci. USA 103, 1551-1556 https://doi.org/10.1073/pnas.0510658103
  23. Nakahira, E., Kagawa, T., Shimizu, T., Goulding, M.D., and Ikenaka, K. (2006). Direct evidence that ventral forebrain cells migrate to the cortex and contribute to the generation of cortical myelinating oligodendrocytes. Dev. Biol. 291, 123-131 https://doi.org/10.1016/j.ydbio.2005.12.010
  24. Naruse, M., Nakahira, E., Miyata, T., Hitoshi, S., Ikenaka, K., and Bansal, R. (2006). Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2. Dev. Biol. 297, 262-273 https://doi.org/10.1016/j.ydbio.2006.05.017
  25. Nery, S., Wichterle, H., and Fishell, G. (2001). Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527-540
  26. Nishiyama, A., Komitova, M., Suzuki, R., and Zhu, X. (2008). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9-22 https://doi.org/10.1038/nrn2495
  27. Olsson, M., Bjorklund, A., and Campbell, K. (1998). Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84, 867-876 https://doi.org/10.1016/S0306-4522(97)00532-0
  28. Ono, K., Takebayashi, H., Ikeda, K., Furusho, M., Nishizawa, T., Watanabe, K., and Ikenaka, K. (2008). Spacio-temporal changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. Dev. Biol. 320, 456-468 https://doi.org/10.1016/j.ydbio.2008.06.001
  29. Park, H.C., Mehta, A., Richardson, J.S., and Appel, B. (2002). Olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356-368 https://doi.org/10.1006/dbio.2002.0738
  30. Parras, C.M., Hunt, C., Sugimori, M., Nakafuku, M., Rowitch, D.H., and Guillemot, F. (2007). The proneural gene Mash1 specifies and early population of telencephalic oligodendrocytes. J. Neurosci. 27, 4233-4242 https://doi.org/10.1523/JNEUROSCI.0126-07.2007
  31. Petryniak, M.A., Potter, G.B., Rowitch, D.H., and Rubenstein, J.L.R. (2007). Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417-433 https://doi.org/10.1016/j.neuron.2007.06.036
  32. Rivers, L.E., Young, K.M., Rizzi, M., Jamen, F., Psachoulia, K., Wade, A., Kessaris, N., and Richardson, W.D. (2008). PDGFRa/NG2 glia generates myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 11, 1392-1401 https://doi.org/10.1038/nn.2220
  33. Takebayashi, H., Yoshida, S., Sugimori, M., Kosako, H., Kominami, R., Nakafuku, M., and Nabeshima, Y. (2000). Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143-148 https://doi.org/10.1016/S0925-4773(00)00466-4
  34. Takebayashi, H., Nabeshima, Y., Yoshida, S., Chisaka, O., Ikenaka, K., and Nabeshima, Y. (2002). The basic helix-loop-helix factor olig2 is essential for the development of motoneuron and oligodendrocyte lineages. Curr. Biol. 12, 1157-1163 https://doi.org/10.1016/S0960-9822(02)00926-0
  35. Takebayashi, H., Usui, N., Ono, K., and Ikenaka, K. (2008). Tamoxifen modulates apoptosis in multiple modes of action in CreER mice. Genesis 46, 775-781 https://doi.org/10.1002/dvg.20461
  36. Tan, A.M., Zhang, W., and Levine, J.M. (2005). NG2: a component of the glial scar that inhibits axon growth. J. Anat. 207, 717-725 https://doi.org/10.1111/j.1469-7580.2005.00452.x
  37. Tatsumi, K., Takebayashi, H., Manabe, T., Tanaka, K.F., Makinodan, M., Yamauchi, T., Makinodan, E., Matsuyoshi, H., Okuda, H., Ikenaka K., et al. (2008). Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocyte. J. Neurosci. Res. 86, 3494-3502 https://doi.org/10.1002/jnr.21862
  38. Tekki-Kessaris, N., Woodruff, R., Hall, A.C., Gaffield, W., Kimura, S., Stiles, C.D., and Rowitch, D.H. (2001). Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128, 2545-2554
  39. Vue, T.Y., Aaker, J., Taniguchi, A., Kazemzadeh, C., Skidmore, J.M., Martin, D.M., Martin, J.F., Treier, M., and Nakagawa, Y. (2007). Characterization of progenitor domains in the developing mouse thalamus. J. Comp. Neurol. 505, 73-91 https://doi.org/10.1002/cne.21467
  40. Wu, S., Wu, Y., and Capecchi, M.R. (2006). Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage-restricted progenitors in vivo. Development 133, 581-580 https://doi.org/10.1242/dev.02236
  41. Xin, M., Yue, T., Ma, Z., Wi, F.F., Gow, A., and Lu, Q.R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354-1365 https://doi.org/10.1523/JNEUROSCI.3034-04.2005
  42. Yue, T., Xian, K., Hurlock, E., Xin, M., Kernie, S.G., Parada, L.F., and Lu, Q.R. (2006). A critical role for dorsal progenitors in cortical myelination. J. Neurosci. 26, 1275-1280 https://doi.org/10.1523/JNEUROSCI.4717-05.2006
  43. Zhou, Q., and Anderson, D.J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61-73 https://doi.org/10.1016/S0092-8674(02)00677-3
  44. Zhou, Q., Wang, S., and Anderson, D.J. (2000). Identification of a novel family of oligodendrocyte lineage-specific basic helix-loophelix transcription factors. Neuron 25, 331-343 https://doi.org/10.1016/S0896-6273(00)80898-3
  45. Zhu, X., Bergles, D.E., and Nishiyama, A. (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135, 145-157 https://doi.org/10.1242/dev.004895

Cited by

  1. Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia vol.1305, pp.None, 2009, https://doi.org/10.1016/j.brainres.2009.09.084
  2. Oligodendrocyte precursors originate in the parabasal band of the basal plate in prosomere 1 and migrate into the alar prosencephalon during chick development vol.58, pp.12, 2009, https://doi.org/10.1002/glia.21019
  3. Control of neuronal migration through rostral migratory stream in mice vol.43, pp.4, 2009, https://doi.org/10.5115/acb.2010.43.4.269
  4. Tcf3 function is required for the inhibition of oligodendroglial fate specification in the spinal cord of zebrafish embryos vol.32, pp.4, 2009, https://doi.org/10.1007/s10059-011-0152-1
  5. Spontaneous reactive astrogliosis in the dentate gyrus of Bax-deficient mice vol.31, pp.4, 2009, https://doi.org/10.1007/s10059-011-0319-9
  6. Role of transcription factors in neurogenesis after cerebral ischemia vol.22, pp.4, 2009, https://doi.org/10.1515/rns.2011.034
  7. Olig2 Lineage Cells Generate GABAergic Neurons in the Prethalamic Nuclei, Including the Zona Incerta, Ventral Lateral Geniculate Nucleus and Reticular Thalamic Nucleus vol.33, pp.2, 2009, https://doi.org/10.1159/000328974
  8. Oligodendroglial Development : New Roles for Chromatin Accessibility vol.21, pp.6, 2009, https://doi.org/10.1177/1073858414565467
  9. Oligodendrocyte precursor cells in the mouse optic nerve originate in the preoptic area vol.222, pp.5, 2009, https://doi.org/10.1007/s00429-017-1394-2
  10. A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex vol.145, pp.20, 2009, https://doi.org/10.1242/dev.169276
  11. Variants of the OLIG2 Gene are Associated with Cerebral Palsy in Chinese Han Infants with Hypoxic-Ischemic Encephalopathy vol.21, pp.1, 2019, https://doi.org/10.1007/s12017-018-8510-1
  12. Activation and Role of Astrocytes in Ischemic Stroke vol.15, pp.None, 2009, https://doi.org/10.3389/fncel.2021.755955
  13. Olig2-astrocytes express neutral amino acid transporter SLC7A10 (Asc-1) in the adult brain vol.14, pp.1, 2009, https://doi.org/10.1186/s13041-021-00874-8