The safety culture of an organization is the product of individual and group values, attitudes, perceptions, competencies, and patterns of behavior that determine the commitment, the style and proficiency, and an organization's health and safety management. A good safety culture includes effective, appropriate safety management systems; strong safety leadership & commitment from management; participation and involvement of the workforce; and organizational learning and continuous improvement. This paper will introduce the safety culture inspection standards and process in Korea Railway. The main purpose is to get a better understanding of safety culture and to develop measuring tool. First of all we developed the composition factor of safety culture and the question set. And we prepared the base of computerization of safety culture measurement by developing of evaluation standards and weighted value.
The Journal of Asian Finance, Economics and Business
/
제8권4호
/
pp.507-515
/
2021
Knowledge-Worker Productivity (KWP) has been influenced by Knowledge Management Process (KMP); however, past studies derived inconsistent findings of the relationship between the two variables. Additionally, the effect of KMP on KWP in the context of universities in Sri Lanka has not been adequately studied. Therefore, this present study aims to fill that gap by examining KMP elements' effect, namely knowledge creation, knowledge sharing, and usage on KWP, specifically the timeliness, proficiency, and independence of employees. This study also examines the role of employee engagements (i.e., intellectual, social, and affective) in mediating the effect of KMP on KWP. The questionnaire survey method was utilized to collect data from relevant university employees, i.e., lecturers, senior lecturers, and professors, whereby 264 valid responses were used in the analysis. The associations between KMP, Employee Engagement, and KWP were analyzed using the path analysis and bootstrapping methods. The outcomes demonstrated positive correlations between all three variables. Employee Engagement was shown to have a partial mediating effect on the KMP-KWP association. The general conclusion is that KWP is influenced by its capacity to increase employee engagement via KMP.
This research project is a program promoted to seek diversification of domestic radioactive waste analysis institutions, and seeks public development, win-win cooperation, and cooperation between the entrusted institution and the entrusted institution. Accordingly, the entrusted institution established a standard analysis procedure for establishing a quality control system for radioactivity analysis, establishing a radiation control zone, obtaining KOLAS accreditation, and performing proficiency tests, which are the performance ranges requested by the entrusted institution, and intersecting the radioactive isotope waste generated at the actual site. Verification was performed to confirm the analysis quality. In addition, facilities and equipment for radioactivity analysis were supplemented and expanded, and the basic technology foundation and technical skills were secured through securing professional technicians and education/training. It is judged that the entrusted institution will contribute to securing radiation safety through the smooth execution of treatment, disposal, and transportation through value creation and analysis of radioactive waste generated by radioactive isotope-using institutions (research institutes, hospitals, industries, etc.) by succeeding in this research project do.
The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.
초거대 언어모델은 과연 수수께끼 문제에 재치있는 답변을 할 수 있을까? 최근 초거대 언어모델(Large language model, LLM)은 강력한 성능 및 유저 만족도를 보이며 세계의 이목을 집중시키고 있다. 여러 태스크들에 대한 정량 평가를 넘어서 최근에는 LLM의 창의력 및 고도화된 언어능력을 평가하는 연구들이 등장하고 있다. 본 논문에서는 이러한 연구 흐름에 따라 LLM의 재치에 관해 고찰해본다. 이때 재치를 평가하기 위한 태스크로 이를 요구하는 말놀이인 수수께끼를 활용한다. 본 논문은 LLM이 수수께끼를 잘 수행하는지를 모델 추론을 통해 평가하며, 모델 추론 시 활용되는 프롬프트들의 성격에 따른 성능 변화를 관찰한다. 또한 수수께끼의 종류에 따른 모델의 능력을 비교 분석하며 LLM의 추론 결과에 대한 오류 분석을 수행한다. 본 논문은 실험을 통해 GPT-4가 가장 높은 성능을 보이며, 설명글이나 데이터 예시를 추가할 시 성능을 한층 더 향상시킬 수 있음을 확인한다. 또한 단어 기반보다는 특성 기반의 수수께끼에 더욱 강력한 성능을 보이며, 오류 유형 분석을 통해 LLM이 환각(hallucination) 문제와 창의력을 동시에 가지고 있다고 분석한다.
언어와 감정 사이의 복잡한 관계의 특징을 보이며, 우리의 말을 통해 감정을 식별하는 것은 중요한 과제로 인식된다. 이 연구는 음성 및 텍스트 데이터를 모두 포함하는 다중 모드 분류 작업을 통해 음성 언어의 감정을 식별하기 위해 속성 엔지니어링을 사용하여 이러한 과제를 해결하는 것을 목표로 한다. CNN(Convolutional Neural Networks)과 LSTM(Long Short-Term Memory)이라는 두 가지 분류기를 BERT 기반 사전 훈련된 모델과 통합하여 평가하였다. 논문에서 평가는 다양한 실험 설정 전반에 걸쳐 다양한 성능 지표(정확도, F-점수, 정밀도 및 재현율)를 다룬다. 이번 연구 결과는 텍스트와 음성 데이터 모두에서 감정을 정확하게 식별하는 두 모델의 뛰어난 능력을 보인다.
학업 성취는 긍정적인 측면에서 설명하면 학습 목표달성과 연관되어 이루어지는 교육적 기대치를 향상시킬 수 있다. 본 연구의 목적은 학업 성취에 관련된 여러 가지의 변수 관계와 관련된 요인을 분석하고 탐색하는 데 있다. 즉 과거의 성취도, 정보기술 활용 능력, 학업 수행자의 성과 기대치, 학업성취 목표 달성에 관한 발전단계를 연구한다. 본 연구는 정보기술에 기반하여 학업 성취도를 확인하는 발전단계에 있어서의 효과분석에 초점을 두고 있으며 본 연구에 참가한 참가자들에게 본인들의 기대치 척도, 정보기술 활용능력, 정보기술 능력시험, 기초지식 설문지를 작성케 하여 그 결과를 분석하였다. 경로 모형 결과를 기반으로 하여 학생들의 학업 성취도가 지난 과거의 성취도와 관련이 있다는 것에 연구의 초점을 두었다. 학업성취를 위한 발전단계에 관한 연구결과는 학업성취가 학업의 달성 수준을 등급화 하여 목표 달성의 정도를 파악하고 정보기술 능력이 학업성취도에 영향이 있다는 것을 제시한다. 현재의 연구 결과에 의하면, 과거 성취도에 대한 변수가 성과 기대치에 영향을 미친다는 것에 초점을 맞추어 조사하였으나 학업성취도를 예측하는 데에는 성공하지 못하였다.
디지털 트랜스포메이션은 기업의 경영 전략적 관점에서의 조직, 프로세스, 비즈니스 모델, 커뮤니케이션의 광범위하고 근본적 변화를 요구하고 있으나, 성공적인 트랜스포메이션의 핵심 선제요건 중 하나는 구성원의 IT(Information Technology) 역량이다. 공학적 배경 지식 없이 기술경영을 전공하는 학생들은 비교적 단기간에 경영관리 능력과 IT 역량을 동시에 키워야 하는 난제에 처해 있다. 이러한 이유로 효과적인 IT 역량 교육 방법은 기술경영학 분야의 교육 이슈 중 하나로 부각되고 있다. 본 논문은 디지털 트랜스포메이션의 흐름을 주도할 수 있는 학생들을 양성하기 위한 IT 역량 교육은 "무엇"을 "어떻게" 가르쳐야 할 것인가라는 질문에 대한 답을 찾기 위한 하나의 사례로서, 서강대학교 기술경영 전문대학원의 IT 관련 커리큘럼 리노베이션의 과정과 현재까지 교육과정 실행 결과를 제시한다. 특히, IT 역량 교육의 출발점이자 진입장벽이 되는 기초 프로그래밍 교육 과정의 피드백 결과에 대한 충분한 논의를 통해, 기술경영대학원 학생들을 위한 효율적인 IT 교육의 운영 방향에 대한 선행 참조사례를 제공하는 데 본 논문의 목적이 있다.
The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.
Determining the properties of pile from cone penetration test (CPT) is costly, and need several in-situ tests. At the present study, two novel hybrid learning models, namely PSO-RF and HHO-RF, which are an amalgamation of random forest (RF) with particle swarm optimization (PSO) and Harris hawks optimization (HHO) were developed and applied to predict the pile set-up parameter "A" from CPT for the design aim of the projects. To forecast the "A," CPT data along were collected from different sites in Louisiana, where the selected variables as input were plasticity index (PI), undrained shear strength (Su), and over consolidation ratio (OCR). Results show that both PSO-RF and HHO-RF models have acceptable performance in predicting the set-up parameter "A," with R2 larger than 0.9094, representing the admissible correlation between observed and predicted values. HHO-RF has better proficiency than the PSO-RF model, with R2 and RMSE equal to 0.9328 and 0.0292 for the training phase and 0.9729 and 0.024 for testing data, respectively. Moreover, PI and OBJ indices are considered, in which the HHO-RF model has lower results which leads to outperforming this hybrid algorithm with respect to PSO-RF for predicting the pile set-up parameter "A," consequently being specified as the proposed model. Therefore, the results demonstrate the ability of the HHO algorithm in determining the optimal value of RF hyperparameters than PSO.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.