• 제목/요약/키워드: technology base

검색결과 5,151건 처리시간 0.031초

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

A Function-Based Knowledge Base for Technology Intelligence

  • Yoon, Janghyeok;Ko, Namuk;Kim, Jonghwa;Lee, Jae-Min;Coh, Byoung-Youl;Song, Inseok
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.73-87
    • /
    • 2015
  • The development of a practical technology intelligence system requires a knowledge base that structures the core information and its relationship distilled from large volumes of technical data. Previous studies have mainly focused on the methodological approaches for technology opportunities, while little attention has been paid to constructing a practical knowledge base. Therefore, this study proposes a procedure to construct a function-based knowledge base for technology intelligence. We define the product-function-technology relationship and subsequently present the detailed steps for the knowledge base construction. The knowledge base, which is constructed analyzing 1110582 patents between 2009 and 2013 from the United States Patent and Trademark Office database, contains the functional knowledge of products and technologies and the relationship between products and technologies. This study is the first attempt to develop a large-scale knowledge base using the concept of function and has the ability to serve as a basis not only for furthering technology opportunity analysis methods but also for developing practical technology intelligence systems.

단조용 니켈기지 초내열합금의 조직예측기술 (Microstructure Prediction Technology of Ni-Base Superalloy)

  • 염종택;김정한;홍재근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2009
  • As a class of materials, Ni-base superalloys are among the most difficult metal alloys to forge together with refractory metals and cobalt-base superalloys. The mechanical properties of Ni-base superalloys depend very much on grain size and the strengthening phases, $\gamma$' ($Ni_3$(Al,Ti)-type) and $\gamma$".($Ni_3$Nb-type). Especially, the control of grain size remains as a sole means for the control of mechanical properties. The grain size and distribution changes of the wrought superalloys during hot working and heat treatment are mainly controlled by the recrystallization and grain growth behaviors. In this presentation, prediction technology of grain size through the computer-aided process design, and numerical modeling for predicting the microstructure evolution of Ni-base superalloy during hot working were introduced. Also, some case studies were dealt with actual forming processes of Ni-base superalloys.

  • PDF

NDGPS 내륙 기준국의 신호특성 조사.분석 (Survey and Analysis on the signal characteristic for the Land Base Station of the NDGPS)

  • 이용안;이형상;전중성;임성훈;김호준
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 공동학술대회
    • /
    • pp.55-59
    • /
    • 2009
  • 1999년부터 운영이 시작된 해안 DGPS 기준국을 기반으로 우리나라에서는 내륙에서의 NDGPS 이용을 위하여 2002년부터 무주 기준국을 시작으로 하여 2009년 7월에 운영될 춘천기준국에 이르기까지 6개의 내륙 기준국의 구축을 완료하게 되었다. 이에 현재 구축이 진행 중인 춘천 기준국을 제외한 5개의 내륙기준국의 신호 특성을 조사 분석하여 더 나은 내륙 기준국의 서비스의 발전방향을 고찰하고자 한다.

  • PDF

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood;Muhammad Usman;Mati Ullah Shah;Muhammad Rizwan
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.531-543
    • /
    • 2023
  • Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

Wibro 기반 비행기지 방어전력 위치식별체계 구축 및 실험 (Implementation and Evaluation of the Wibro-based Location Identification System for Air Base Protection Force)

  • 표상호;구정;고영배;김기형
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.306-314
    • /
    • 2012
  • This paper proposes a new system to maximize efficiency of Air Base Protection Operations through the development of location identification software. The Wibro-based location identification system for Air Base Protection Force offers Blue Ground Force digitalized character message which is not exposed to enemy. Also, it is possible to automatically provide the location of Blue Ground Force to Air Base Ground Operations Center. The test result proves that this system is very helpful when Air Base Protection Force executes Air Base Protection Operations.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Conformational Study of Y-Base in Yeast tRNA$^{phe}$

  • Moon, Myung-Jun;Jhon, Mu-Shik;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권3호
    • /
    • pp.133-139
    • /
    • 1983
  • To understand the importance of Y-base adjacent to the anticodon stabilizing codon-anticodon interaction, a study has been undertaken for the model compound involving the interaction between Y-base and anticodon as well as the participation of water molecule by calculating the conformational free energy using an empirical potential function. We restrict our analysis to sites directly associated with Y-base by varying only the backbone torsion angles of Y-base. The hydration and $Mg^{+2}$ binding effects on the conformational stability of Y-base are calculated and discussed. The free Y-base is proved to be less stable than the hydrated one. The free energy change due to the hydration of Y-base amounts to -119.5 kcal/mole, in which the conformational energy change is -142.4 kcal/mole and the configurational entropy change is -76.9 e. u. It is found that the water molecules bound to Y-base and $Mg^{+2}$ contribute to the conformation of Y-base dominantly.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.