• Title/Summary/Keyword: technological systems

Search Result 1,220, Processing Time 0.03 seconds

Construction Techniques of Earthen Fortifications in the Hanseong Period of Baekje Kingdom (백제 한성기 토성의 축조기술)

  • LEE, Hyeokhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.168-184
    • /
    • 2022
  • This paper examined the construction techniques of the earthen fortifications in the Hanseong Period of Baekje Kingdom, which has been researched most frequently among the Three Kingdoms. The construction processes of the Earthen Fortifications were reviewed and dividing into 'selection of location and construction of the base', 'construction of the wall', and 'finish, extension and repair'. The results show that various techniques were mobilized for building these earthen fortifications. Techniques which were adequate for the topography were utilized for reinforcing the base, and several other techniques were used for constructing the wall. In particular, techniques for wall construction may be clearly divided into those of the fill(盛土) and panchuk(版築) techniques. The fill method has been assumed since the 2000s to have been more efficient than the panchuk technique. This method never uses the structure of the panchuk technique and is characterized by a complex soil layer line, an alternate fill, use of 'earth mound(土堤)'/'clay clod(土塊)', and junctions of oval fill units. The fill method allows us to understand active technological sharing and application among the embankment structures in the period of the Three Kingdoms. The panchuk technique is used to construct a wall using a stamped earthen structure. This technique is divided into types B1 and B2 according to the height, scale, and extension method of the structure. Type B1 precedes B2, which was introduced in the late Hanseong Period. Staring with the Pungnap Earthen Fortification in Seoul, the panchuk technique seems to have spread throughout South Korea. The techniques of the fill and panchuk techniques coexisted at the time when they appeared, but panchuk earthen fortifications gradually dominated. Both techniques have completely different methods for the soil layers, and they have opposite orders of construction. Accordingly, it is assumed that both have different technical systems. The construction techniques of the earthen fortifications began from the Hanseong Period of Baekje Kingdom and were handed down and developed until the Woongjin-Sabi Periods. In the process, it seems that there existed active interactions with other nations. Recently, since studies of the earthen fortifications have been increasing mainly in the southern areas, it is expected that comparative analysis with neighboring countries will be done intensively.

Development of Smart Digital Agriculture Technology for Food Crop Production in Korea-The Path Forward Based on Expert Feedback (식량작물 생산에 대한 스마트디지털 농업기술의 발전 방향 - 전문가 설문조사 연구)

  • Song, Ki Eun;Jung, Jae Gyeong;Cho, Seungho;Kim, Jae Yoon;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.27-40
    • /
    • 2022
  • Building self-sustainable rural infrastructure and environment through smart digital agriculture technology innovation is one of the major goals of the Korean agricultural administration as a part of the nation's 4th industry revolution. To identify areas for improving and effectively investing in the acceleration of rural development, 207 experts in the areas of crop science and smart digital agriculture technology were interviewed for their opinions and suggestions on 22 questions designed to recognize fundamental agricultural issues to be addressed and solutions to advance technology innovation and rural development. Majority of the participants expected smart digital agriculture technologies to resolve major agricultural issues and help build a better rural environment. To overcome technology gaps and resolve issues more effectively, further investment in training new technology experts and building stronger agricultural technology infrastructure is urgent, and persistent and systematic support from agricultural administration appears to be the key for accelerating the process. While the leading global groups of both public and private sectors have advanced their technologies beyond the field application stage, most of the Korean technologies remain at the early pilot stage. Aging population and lack of labor in rural areas, unknown future climate change, and challenges in sustainable rural development are expected to be resolved by smart digital agriculture technologies. Technological innovations by research institutes should be promptly deployed in the crop production field, and farm training systemically organized by local technology centers can accelerate farming revolution. Standardization of equipment and data systems is another key to the success of digitalization of food crop production and food supply chains nationwide.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Venture Capital Investment and the Performance of Newly Listed Firms on KOSDAQ (벤처캐피탈 투자에 따른 코스닥 상장기업의 상장실적 및 경영성과 분석)

  • Shin, Hyeran;Han, Ingoo;Joo, Jihwan
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.2
    • /
    • pp.33-51
    • /
    • 2022
  • This study analyzes newly listed companies on KOSDAQ from 2011 to 2020 for both firms having experience in attracting venture investment before listing (VI) and those without having experience in attracting venture investment (NVI) by examining differences between two groups (VI and NVI) with respect to both the level of listing performance and that of firm performance (growth) after the listing. This paper conducts descriptive statistics, mean difference, and multiple regression analysis. Independent variables for regression models include VC investment, firm age at the time of listing, firm type, firm location, firm size, the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company. Throughout this paper, results suggest that listing performance and post-listed growth are better for VI than NVI. VC investment shows a negative effect on the listing period and a positive effect on the sales growth rate. Also, the amount of VC investment has negative effects on the listing period and positive effects on the market capitalization at the time of IPO and on sales growth among growth indicators. Our evidence also implies a significantly positive effect on growth after listing for firms which belong to R&D specialized industries. In addition, it is statistically significant for several years that the firm age has a positive effect on the market capitalization growth rate. This shows that market seems to put the utmost importance on a long-term stability of management capability. Finally, among the VC characteristics such as the age of VC, the level of expertise of VC, and the level of fitness of VC with investment company, we point out that a higher market capitalization tends to be observed at the time of IPO when the level of expertise of anchor VC is high. Our paper differs from prior research in that we reexamine the venture ecosystem under the outbreak of coronavirus disease 2019 which stimulates the degradation of the business environment. In addition, we introduce more effective variables such as VC investment amount when examining the effect of firm type. It enables us to indirectly evaluate the validity of technology exception policy. Although our findings suggest that related policies such as the technology special listing system or the injection of funds into the venture ecosystem are still helpful, those related systems should be updated in a more timely fashion in order to support growth power of firms due to the rapid technological development. Furthermore, industry specialization is essential to achieve regional development, and the growth of the recovery market is also urgent.

Analysis of Perceptions of Student Start-up Policies in Science and Technology Colleges: Focusing on the KAIST case (과기특성화대학 학생창업정책에 대한 인식분석: KAIST 사례를 중심으로)

  • Tae-Uk Ahn;Chun-Ryol Ryu;Minjung Baek
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.197-214
    • /
    • 2024
  • This study aimed to investigate students' perceptions at science and technology specialized universities towards entrepreneurship support policies and to derive policy improvement measures by applying a bottom-up approach to reflect the requirements of the policy beneficiaries, i.e., the students. Specifically, the research explored effective execution strategies for student entrepreneurship support policies through a survey and analysis of KAIST students. The findings revealed that KAIST students recognize the urgent need for improvement in sharing policy objectives with the student entrepreneurship field, reflecting the opinions of the campus entrepreneurship scene in policy formulation, and constructing an entrepreneurship-friendly academic system for nurturing student entrepreneurs. Additionally, there was a highlighted need for enhancement in the capacity of implementing agencies, as well as in marketing and market development capabilities, and organizational management and practical skills as entrepreneurs within the educational curriculum. Consequently, this study proposes the following improvement measures: First, it calls for enhanced transparency and accessibility of entrepreneurship support policies, ensuring students clearly understand policy objectives and can easily access information. Second, it advocates for student-centered policy development, where students' opinions are actively incorporated to devise customized policies that consider their needs and the actual entrepreneurship environment. Third, there is a demand for improving entrepreneurship-friendly academic systems, encouraging more active participation in entrepreneurship activities by adopting or refining academic policies that recognize entrepreneurship activities as credits or expand entrepreneurship-related courses. Based on these results, it is expected that this research will provide valuable foundational data to actively support student entrepreneurship in science and technology specialized universities, foster an entrepreneurial spirit, and contribute to the creation of an innovation-driven entrepreneurship ecosystem that contributes to technological innovation and social value creation.

  • PDF

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

A Study on Recent Research Trend in Management of Technology Using Keywords Network Analysis (키워드 네트워크 분석을 통해 살펴본 기술경영의 최근 연구동향)

  • Kho, Jaechang;Cho, Kuentae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.101-123
    • /
    • 2013
  • Recently due to the advancements of science and information technology, the socio-economic business areas are changing from the industrial economy to a knowledge economy. Furthermore, companies need to do creation of new value through continuous innovation, development of core competencies and technologies, and technological convergence. Therefore, the identification of major trends in technology research and the interdisciplinary knowledge-based prediction of integrated technologies and promising techniques are required for firms to gain and sustain competitive advantage and future growth engines. The aim of this paper is to understand the recent research trend in management of technology (MOT) and to foresee promising technologies with deep knowledge for both technology and business. Furthermore, this study intends to give a clear way to find new technical value for constant innovation and to capture core technology and technology convergence. Bibliometrics is a metrical analysis to understand literature's characteristics. Traditional bibliometrics has its limitation not to understand relationship between trend in technology management and technology itself, since it focuses on quantitative indices such as quotation frequency. To overcome this issue, the network focused bibliometrics has been used instead of traditional one. The network focused bibliometrics mainly uses "Co-citation" and "Co-word" analysis. In this study, a keywords network analysis, one of social network analysis, is performed to analyze recent research trend in MOT. For the analysis, we collected keywords from research papers published in international journals related MOT between 2002 and 2011, constructed a keyword network, and then conducted the keywords network analysis. Over the past 40 years, the studies in social network have attempted to understand the social interactions through the network structure represented by connection patterns. In other words, social network analysis has been used to explain the structures and behaviors of various social formations such as teams, organizations, and industries. In general, the social network analysis uses data as a form of matrix. In our context, the matrix depicts the relations between rows as papers and columns as keywords, where the relations are represented as binary. Even though there are no direct relations between papers who have been published, the relations between papers can be derived artificially as in the paper-keyword matrix, in which each cell has 1 for including or 0 for not including. For example, a keywords network can be configured in a way to connect the papers which have included one or more same keywords. After constructing a keywords network, we analyzed frequency of keywords, structural characteristics of keywords network, preferential attachment and growth of new keywords, component, and centrality. The results of this study are as follows. First, a paper has 4.574 keywords on the average. 90% of keywords were used three or less times for past 10 years and about 75% of keywords appeared only one time. Second, the keyword network in MOT is a small world network and a scale free network in which a small number of keywords have a tendency to become a monopoly. Third, the gap between the rich (with more edges) and the poor (with fewer edges) in the network is getting bigger as time goes on. Fourth, most of newly entering keywords become poor nodes within about 2~3 years. Finally, keywords with high degree centrality, betweenness centrality, and closeness centrality are "Innovation," "R&D," "Patent," "Forecast," "Technology transfer," "Technology," and "SME". The results of analysis will help researchers identify major trends in MOT research and then seek a new research topic. We hope that the result of the analysis will help researchers of MOT identify major trends in technology research, and utilize as useful reference information when they seek consilience with other fields of study and select a new research topic.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Changes in Agricultural Extension Services in Korea (한국농촌지도사업(韓國農村指導事業)의 변동(變動))

  • Fujita, Yasuki;Lee, Yong-Hwan;Kim, Sung-Soo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.7 no.1
    • /
    • pp.155-166
    • /
    • 2000
  • When the marcher visited Korea in fall 1994, he was shocked to see high rise apartment buildings around the capitol region including Seoul and Suwon, resulting from rising demand of housing because of urban migration followed by second and third industrial development. After 6 years in March 2000, the researcher witnessed more apartment buildings and vinyl house complexes, one of the evidences of continued economic progress in Korea. Korea had to receive the rescue finance from International Monetary Fund (IMF) because of financial crisis in 1997. However, the sign of recovery was seen in a year, and the growth rate of Gross Domestic Products (GDP) in 1999 recorded as high as 10.7 percent. During this period, the Korean government has been working on restructuring of banks, enterprises, labour and public sectors. The major directions of government were; localization, reducing administrative manpower, limiting agricultural budgets, privatization of public enterprises, integration of agricultural organization, and easing of various regulations. Thus, the power of central government shifted to local government resulting in a power increase for city mayors and county chiefs. Agricultural extension services was one of targets of government restructuring, transferred to local governments from central government. At the same time, the number of extension offices was reduced by 64 percent, extension personnel reduced by 24 percent, and extension budgets reduced. During the process of restructuring, the basic direction of extension services was set by central Rural Development Administration Personnel management, technology development and supports were transferred to provincial Rural Development Administrations, and operational responsibilities transferred to city/county governments. Agricultural extension services at the local levels changed the name to Agricultural Technology Extension Center, established under jurisdiction of city mayor or county chief. The function of technology development works were added, at the same time reducing the number of educators for agriculture and rural life. As a result of observations of rural areas and agricultural extension services at various levels, functional responsibilities of extension were not well recognized throughout the central, provincial, and local levels. Central agricultural extension services should be more concerned about effective rural development by monitoring provincial and local level extension activities more throughly. At county level extension services, it may be desirable to add a research function to reflect local agricultural technological needs. Sometimes, adding administrative tasks for extension educators may be helpful far farmers. However, tasks such as inspection and investigation should be avoided, since it may hinder the effectiveness of extension educational activities. It appeared that major contents of the agricultural extension service in Korea were focused on saving agricultural materials, developing new agricultural technology, enhancing agricultural export, increasing production and establishing market oriented farming. However these kinds of efforts may lead to non-sustainable agriculture. It would be better to put more emphasis on sustainable agriculture in the future. Agricultural extension methods in Korea may be better classified into two approaches or functions; consultation function for advanced farmers and technology transfer or educational function for small farmers. Advanced farmers were more interested in technology and management information, while small farmers were more concerned about information for farm management directions and timely diffusion of agricultural technology information. Agricultural extension service should put more emphasis on small farmer groups and active participation of farmers in these groups. Providing information and moderate advice in selecting alternatives should be the major activities for consultation for advanced farmers, while problem solving processes may be the major educational function for small farmers. Systems such as internet and e-mail should be utilized for functions of information exchange. These activities may not be an easy task for decreased numbers of extension educators along with increased administrative tasks. It may be difficult to practice a one-to-one approach However group guidance may improve the task to a certain degree.

  • PDF