• Title/Summary/Keyword: techno-functional

Search Result 260, Processing Time 0.029 seconds

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs

  • Keskin, Riza S.O.;Arslan, Guray
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.697-715
    • /
    • 2013
  • Numerous studies have been conducted to understand the shear behavior of reinforced concrete (RC) beams since it is a complex phenomenon. The diagonal cracking strength of a RC beam is critical since it is essential for determining the minimum amount of stirrups and the contribution of concrete to the shear strength of the beam. Most of the existing equations predicting the diagonal cracking strength of RC beams are based on experimental data. A powerful computational tool for analyzing experimental data is an artificial neural network (ANN). Its advantage over conventional methods for empirical modeling is that it does not require any functional form and it can be easily updated whenever additional data is available. An ANN model was developed for predicting the diagonal cracking strength of RC slender beams without stirrups. It is shown that the performance of the ANN model over the experimental data considered in this study is better than the performances of six design code equations and twelve equations proposed by various researchers. In addition, a parametric study was conducted to study the effects of various parameters on the diagonal cracking strength of RC slender beams without stirrups upon verifying the model.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Homogenization based continuum damage mechanics model for monotonic and cyclic damage evolution in 3D composites

  • Jain, Jayesh R.;Ghosh, Somnath
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.279-301
    • /
    • 2008
  • This paper develops a 3D homogenization based continuum damage mechanics (HCDM) model for fiber reinforced composites undergoing micromechanical damage under monotonic and cyclic loading. Micromechanical damage in a representative volume element (RVE) of the material occurs by fiber-matrix interfacial debonding, which is incorporated in the model through a hysteretic bilinear cohesive zone model. The proposed model expresses a damage evolution surface in the strain space in the principal damage coordinate system or PDCS. PDCS enables the model to account for the effect of non-proportional load history. The loading/unloading criterion during cyclic loading is based on the scalar product of the strain increment and the normal to the damage surface in strain space. The material constitutive law involves a fourth order orthotropic tensor with stiffness characterized as a macroscopic internal variable. Three dimensional damage in composites is accounted for through functional forms of the fourth order damage tensor in terms of components of macroscopic strain and elastic stiffness tensors. The HCDM model parameters are calibrated from homogenization of micromechanical solutions of the RVE for a few representative strain histories. The proposed model is validated by comparing results of the HCDM model with pure micromechanical analysis results followed by homogenization. Finally, the potential of HCDM model as a design tool is demonstrated through macro-micro analysis of monotonic and cyclic damage progression in composite structures.

KOH activated pine tree needle leaves biochar as effective sorbent for VOCs in water

  • Theoneste, Nshirirungu;Kim, Moon Hyun;Solis, Kurt Louis;Park, Minoh;Hong, Yongseok
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.293-300
    • /
    • 2018
  • The removal of volatile organic compounds (VOCs) from water using KOH-activated pine tree needle leaves biochar is considered a cost effective and efficient process. In this study, pine tree needle leaves were mixed with 0, 50, 100 and 200% (KOH weight/feedstock weight) of KOH, respectively. Then, the mixture was pyrolyzed at $500^{\circ}C$ for 6 hrs. The adsorption characteristics of 10 VOCs to the biochar were tested. The results indicated that the removal efficiency of the KOH activated biochar was highest in 100% KOH-biochar. The VOC removal efficiencies of 50% and 200% KOH activated biochar were similar and the 0% KOH activated biochar showed the lowest VOC removal. The FTIR results showed that increasing the amount of KOH seemed to enhance the formation of various functional groups, such as -OH, -C=C, -O. The adsorption strength of 10 VOCs to the KOH activated biochar seemed to be increasing by the increase of the solubility of VOCs. This may suggest that the adsorption is taking place in hydrophilic sites of the biochar surface. The KOH activated pine tree needle leaves biochar can be an effective sorbent for VOCs removal in water and 100% KOH mixing seemed to provide better sorption capacity.

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.191-202
    • /
    • 2020
  • The article brings the study of nonlocal, surface and the couple stress together to apparent the frequency retaliation of FG nanobeams (Functionally graded). For the examination of frequency retaliation, the article considers the accurate spot of neutral axis. This article aims to enhance the coherence of proposed model to accurately encapsulate the significant effects of the nonlocal stress field, size effects together with material length scale parameters. These considered parameters are assimilated through what are referred to as modified couple stress as well as nonlocal elasticity theories, which encompasses the stiffness-hardening and softening influence on the nanobeams frequency characteristics. Power-law distribution is followed by the functional gradation of the material across the beam width in the considered structure of the article. Following the well-known Hamilton's principle, fundamental basic equations alongside their correlated boundary conditions are solved analytically. Validation of the study is also done with published result. Distinct parameters (such as surface energy, slenderness ratio, as nonlocal material length scale and power-law exponent) influence is depicted graphically following the boundary conditions on non-dimensional FG nanobeams frequency.

Soyprotein Fiber Formation (대두 단백섬유의 제조에 관한 연구)

  • Byun, Si-Myung;Kwon, Jong-Hoon;Kim, Chul-Jin;Lee, Yang-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.143-150
    • /
    • 1978
  • In our previous report (Korean J. Food Sci. Technol., 9, 123. (1977), functional properties of soyprotein isolates prepared from defatted soybean meal were studied. Using those properties soyprotein fibers, which may be acceptable as meat analogs, were prepared with protein spinning apparatus. Soyprotein can be converted into the suitable form for the spinning by denaturation with alkali (0.6%) and continuous fibers were spun by extruding spinning solution into an 20% NaCl-1 N acetic acid coagulating bath. The process for producing soyprotein fibers on a bench scale was described and break strength, break elongation and textural parameters of the fibers formed were evaluated. The possible scheme of formation of soyprotein fibers was discussed.

  • PDF

Seismic modeling and analysis for sodium-cooled fast reactor

  • Koo, Gyeong-Hoi;Kim, Suk-Hoon;Kim, Jong-Bum
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.475-502
    • /
    • 2012
  • In this paper, the seismic analysis modeling technologies for sodium-cooled fast reactor (SFR) are presented with detailed descriptions for each structure, system and component (SSC) model. The complicated reactor system of pool type SFR, which is composed of the reactor vessel, internal structures, intermediate heat exchangers, primary pumps, core assemblies, and core support structures, is mathematically described with simple stick models which can represent fundamental frequencies of SSC. To do this, detailed finite element analyses were carried out to identify fundamental beam frequencies with consideration of fluid added mass effects caused by primary sodium coolant contained in the reactor vessel. The calculation of fluid added masses is performed by detailed finite element analyses using FAMD computer program and the results are discussed in terms of the ways to be considered in a seismic modeling. Based on the results of seismic time history analyses for both seismic isolation and non-isolation design, the functional requirements for relative deflections are discussed, and the design floor response spectra are proposed that can be used for subsystem seismic design.