The enhancement of inquiry skills has been emphasized as a important objective of science education for a long time. Of these, the observation is not only a simple and basic skill, but also a very important skill, in aspect of gathering informations about the nature of all things around us, through interaction between the sense organs of body and objectives. The purpose of this study is to investigate the results of observations about the grasshopper(Oxya chinesis), made by the elementary student from the 3rd to the 6th grade, and to make use of them as the basic materials for the observative teaming and the evaluation of the observation ability. Through this study, the collected items of observation are as follows For grasshopper, a total of observation items is 95, 70 using the sight sense, 13 using the tactile sense,7 using the olfactory sense. 3 using the palate sense and 2 using the auditory sense. In this study, the findings of elementary student's observation are as follows. 1. On the whole, most of students have observed mainly by the sight and the tactile sense, when observing the grasshopper. 2. It is showed a tendency that the observation ability of student is increased with the higher grade in elementary school. 3. As the grade ascends. the observations with operating are increased, also the quantitative expression and interpretation about them are increased. 4. In the case of same grade, there is no significant difference between students' gender, though girls' ability of the observation showed somewhat higher than boys' 5. Occasionally, the interpretations on the observative facts made by student, are inaccurate. Basis on the above results, we suggested some directions for the improvement of the observative learning program in science classroom of elementary school. First, the teacher have to serve as a guide and encouragement in the observative learning class, to be accomplished the various observation, which all the sensory organ can be used by student than the sight sense. Second, to get elevated the ability of observation, it is necessary that some experimental tools(magnifying lens, stereoscope, auxiliary implements etc.) are utilized. Third, the teacher have to make often endeavors showing an example of operation, to be activated the atmosphere of operative observation.
This study investigated the effect of gender grouping on cooperative learning on the basis of student achievement and science-teaming attitude. Homogeneous and heterogeneous gender groupings were used in the treatment groups for the learning strategies of earth science. Traditional instruction was performed for the control group. Three classes at a middle school were assigned to the groups. Before the treatment instruction, a questionnaire about science-learning attitude was administered to 144 students, and their scores were utilized as covariate. Then, the same questionnaire was given with a test of science achievement designed in this study. The changes in both achievement and attitude among the three groups were analyzed statistically. Significant differences were not shown in science achievement or in the difference of gender with respect to perceptions about science. There were significant changes between the homogeneous and heterogeneous gender grouping in their attitudes toward science instruction. Here the cooperative learning group, regardless of the gender grouping, tends to exhibit more positive perceptions towards their learning environment than the control group, particularly in female students.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.211-214
/
2000
This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\sub$x/, B$\sub$y/, B$\sub$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, learning itself, and the adequacy of the design controller. Also, the performance of the controller can be verified through simulation.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.6
/
pp.876-880
/
2008
Outliers are the observations which are very larger or smaller than most observations in the given data set. These are shown by some sources. The result of the analysis with outliers may be depended on them. In general, we do data analysis after removing outliers. But, in data mining applications such as fraud detection and intrusion detection, outliers are included in training data because they have crucial information. In regression models, simple and multiple regression models need to eliminate outliers from given training data by standadized and studentized residuals to construct good model. In this paper, we use support vector regression(SVR) based on statistical teaming theory to analyze data with outliers in regression. We verify the improved performance of our work by the experiment using synthetic data sets.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.15
no.4
/
pp.14-22
/
2001
In this paper, we design the Adaptive Neuro-Fuzzy Precompensator(ANFP) for the suppression of low-frequency oscillation and the improvement of system stability. Here, ANFP is designed to compensate the conventional Power System Stabilizer(PSS). This design technique has the structural merit that is easily implemented by adding ANFP to an existing PSS. Firstly, the Fuzzy Precompensator with Loaming ability is constructed and is directly learned from the input and output data of the generating unit. Because the ANFP has the property of learning, fuzzy rules and membership functions of the compensator can be automatically tuned by teaming algorithm Loaming is based on the minimization of the ems evaluated by comparing the output of the ANFP and a desired controller. Case studies show the 7posed schema can be provided the good damping of the power system over the wide range of operating conditions and improved dynamic performance of the system.
In ubiquitous computing that is to build computing environments to provide proper services according to user's context, human being's emotion recognition based on facial expression is used as essential means of HCI in order to make man-machine interaction more efficient and to do user's context-awareness. This paper addresses a problem of rigidly basic emotion recognition in context-sensitive facial expressions through a new Bayesian classifier. The task for emotion recognition of facial expressions consists of two steps, where the extraction step of facial feature is based on a color-histogram method and the classification step employs a new Bayesian teaming algorithm in performing efficient training and test. New context-sensitive Bayesian learning algorithm of EADF(Extended Assumed-Density Filtering) is proposed to recognize more exact emotions as it utilizes different classifier complexities for different contexts. Experimental results show an expression classification accuracy of over 91% on the test database and achieve the error rate of 10.6% by modeling facial expression as hidden context.
Journal of Institute of Control, Robotics and Systems
/
v.8
no.2
/
pp.126-135
/
2002
The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.
This study suggests the dynamic value chain model, that will be able to not only show changing processes to organization's significant capital by integrating an individual, implicit, and explicit knowledge which affect organizational decision making, but also distinguish the key driver for raising organizational competitive power because it makes possible to analyze sensitivity of performance along with decision making alternatives and policy changes from dynamic view by connecting knowledge management capability, knowledge management activity, and relations with organizational performance with specific strategic map. Recently, a lot of organizations show interest in measuring and evaluating their performance synthetically. In organizations taking knowledge management, they introduce effective value chain model like a dynamic balanced scorecard (DBSC), and therefore they can reflect their knowledge management condition as well as show their changes by checking performance of established vision and strategy periodically. Furthermore, they can ask for their inner members' understanding and participation by communicating with and inspiring their members with awareness that members are one of their group, present a base of benchmarking, and offer significant information for later decision making. The BSC has been a successful framework for measuring an organization's performance in various perspectives through translating an organization's vision and strategy into an interrelated set of key performance indicators and specific actions. The BSC, while having significant strengths over traditional performance measurement methods, however, has its own limitations, due to its static nature, such as overlooking two-way causation between performance indicators and neglecting the impact of delayed feedback flowing from the adoption of new strategies or policy changes. To overcome these limitations, this study employs SD, a methodology for understanding complex systems where dynamic feedback among the interrelated system components significantly impact on the system outcomes. The SD simulation model in the form of DBSC would serve as a useful strategic teaming tool for facilitating an organization's communication process through various scenario analyses as well as predicting the dynamic behavior pattern of their key performance measures over a future time frame. For the demonstration purpose, this study applied the DBSC model to Prototype of Korea manufacturing and service firm.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.1
/
pp.1-8
/
2004
According to the development of the Internet and the pervasion of Data Base, it is not easy to search for necessary information from the huge amounts of data. In order to do efficient analysis of a large amounts of data, this paper proposes a method for pattern classification based on the effective strategy for dimension reduction for narrowing down the whole data to what users wants to search for. To analyze data effectively, Radial Basis Function Networks based on VC-dimension of Support Vector Machine, a model of statistical teaming, is proposed in this paper. The model of Radial Basis Function Networks currently used performed the preprocessing of Perceptron model whereas the model proposed in this paper, performing independent analysis on VD-dimension, classifies each datum putting precise labels on it. The comparison and estimation of various models by using Machine Learning Data shows that the model proposed in this paper proves to be more efficient than various sorts of algorithm previously used.
Kim, Cheon-Shik;Yoon, Eun-Jun;Hong, You-Sik;Moon, Nam-Mee
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.5
/
pp.25-31
/
2008
It is important for users to be confirming in e-Leaning system, because legitimate learner should be joined to the system for teaming and testing Thus, most system for authentication was verified using id and password with learner's id and password. In this case, It can be easy for hackers to steal learner's id and password. In addition, soma learner gets another to sit for the examination for one with another person id and password. For the solution like this problem it needs a biometrics authentication for complement. This method is required so much extra cost as well as are an unwanted concern. Therefore, we proposed keystroke technique to decide which learners are righteous or unlawful in this paper. In addition, we applied statistics and neural network for the performance of keystroke system. As a result, the performance of FAR and FRR in keystroke authentication was increased by proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.