본 연구는 통합을 실천하고 있는 두 학교의 사례를 통해 학교 차원의 통합 과학교육의 가능성을 알아보고자 하였다. 이를 위하여 통합을 실천하고 있는 학교에서 일어나는 통합은 어떤 형태인지 그리고 일반 학교와 구별되는 그 학교의 상황 요소는 무엇인지를 수업 참관, 교사 면담, 학교교육계획서 수집, 수업 동영상 분석, 학생 결과물 수집과 같은 다중적인 방법을 사용하여 살펴보았다. 본 연구의 결과는 다음과 같다. 첫째, 두 학교는 통합의 유형, 수준, 교사의 역할, 학생 활동에서 차이를 드러냈으며 이러한 차이가 다른 모습의 통합 과학교육 사례를 보여주었다. 둘째, 두 학교가 통합을 실천할 수 있게 한 학교 상황 요소가 있었다. 통합교육을 실천한 학교를 대상으로 한 선행 연구 결과와 비교했을 때 '리더십', '교사 팀의 협력활동', '교육계획을 위한 시간확보', '유동적인 시간운영', '지역사회와 연계'와 같은 유사한 학교 상황요소가 발견되었다. 그러나 두 학교의 사례에서는 통합을 기존의 안정적 성격의 교육적 시도가 아닌 보수적인 교사 문화를 극복하여 학교 교육의 혁신을 추구하는 것으로 보았다. 따라서 이 연구에서는 '보수적 문화극복/혁신 추구'를 새로운 학교 상황 요소로 제안하였다. 또한 두 학교는 안정적인 교사 관계를 형성하였으나 선행 연구에 비해 단기간에 대규모로 실시되었기 때문에 선행 연구에서 제안한 '소규모의 안정적인 학습 환경' 대신 '협력적 친밀한 관계'로 요소를 수정하였다.
본 연구의 목적은 거주자의 명령 없이도 스스로 거주자의 행위를 배워서 다가올 상황을 예측하고 이에 맞춰진 개인화 된 서비스를 제공할 수 있는 지능형 유비쿼터스 주택의 시스템구조를 제안하는 것이다. 이러한 시스템 구조가 갖춰야 할 전제조건으로 거주자의 행위패턴, 공간이동패턴, 서비스패턴을 조합한 맞춤형 서비스개념 도입이 필수적임을 도출했고, 이를 구현할 수 있는 4가지 구성요소로 Agent, Database, Working Memory, Log Data가 필요함을 확인하였다. 특히 이들 4가지 구성요소를 갖는 지능형 유비쿼터스 주택의 시스템 구조는 처음에는 거주자 행위의 사례나 패턴이 저장되어 있지 않지만 시간이 지남에 따라 각 거주자에 대한 정보가 누적되고 거주자의 라이프스타일을 인식하게 되면서 거주자별 맞춤형 서비스를 제공할 수 있는 기반이 될 것이다.
본 논문에서는 다중 입$\cdot$출력을 갖는 이동 로봇의 경로 추종을 위해 웨이블깃 신경 회로망에 기반한 예측 제어 방법을 제안한다. 제안된 방법에서 상태 예측기로는 학습 능력이 뛰어난 신경 회로망의 특성 및 웨이블릿 분해의 특성을 합성한 웨이블릿 신경 회로망을 사용한다. 예측기는 경사 하강법을 사용하여 웨이블릿 신경회로망의 출력에 대한 실제 이동 로봇의 상태 오차를 최소화하도록 학습된다. 또한 이동 로봇의 제어 신호인 직진 속도 및 각속도는 추종하고자 하는 기준 경로에 대한 이동 로봇의 예측 상태 오차를 이용하여 정의된 비용 함수를 최소화하도록 구해진다. 컴퓨터 모의 실험에서 변화되는 기준 경로에 대한 경로 추종 성능을 통해 제안한 예측 제어 시스템의 적용 가능성 및 효율성을 보인다.
이 논문에서 우리는 국가연구데이터플랫폼 (DataON)의 분석서비스인 CANVAS (Creative ANalytics enVironment And System)를 제안한다. CANVAS는 연구데이터 분석 자원과 도구가 필요한 연구자들을 위한 개인화된 분석 클라우드 서비스이다. CANVAS는 마이크로서비스 아키텍쳐 기반으로 확장성을 고려하여 설계하였으며 전자정부프레임워크인 Spring 프레임워크, Kubernetes, JupyterLab 등의 오픈소스 소프트웨어를 이용하여 구축하였다. 구축된 시스템은 여러 사용자에게 개인화된 분석환경을 제공하며 고성능 클라우드 인프라 (CPU·GPU)를 활용하여 고속의 대용량 데이터 분석이 가능하다. 구체적으로 JupyterLab 이나 GUI 워크플로우 환경에서 데이터 모델링 및 처리가 가능하다. CANVAS는 DataON과 데이터가 공유되므로 사용자가 등록하거나 다운로드 받은 연구데이터는 CANVAS에서 바로 분석을 수행할 수 있다. 이로서 CANVAS는 DataON 사용자의 데이터 분석 편의성을 높이고 연구데이터 공유·활용 활성화에 기여한다.
The aim of this research is to develop a clothing and textiles studio course for preservice home economics teachers applying principles of Project-Based Learning (PBL) and maker education to equip future teachers with the ability to nurture creativity among adolescents. The studio course was developed in the following stages: analysis, design, development, implementation, and evaluation. We concluded that the resulting course met the following objectives extracted from the 2015 revised curriculum of home economics subjects: to promote creative and environmentally-friendly fashion design and styling abilities, gain the ability to use makerspace tools, understand flat pattern making and sewing processes, and develop creative thinking, aesthetic sense, and communication skills. Furthermore, the educational effects of PBL and maker education were confirmed through student comments on the course. Students mentioned the practicality of the material in their actual lives along with their enhanced integration of the subject material, self-directedness, aesthetic sense, ability to learn through trial and error, collaboration and communication, and sharing. Based on results from the implementation and evaluation stages, a clothing and textiles studio course should include the following modules: introduction of terms and tools, submission and sharing of clothing reformation and upcycling techniques, introduction to hand sewing, pouch making, heat-transfer printing, 3D printing, mask making, hat making, vest making, and the final team project on fashion styling. It is important for instructors to provide detailed guidelines on selecting personas for styling, looking for available materials, and selecting materials online.
이 연구의 목적은 간호대학생을 위한 창의성 기반 창의융합교과목을 개발하는 것이다. 연구의 목적을 위해 Bobbitt의 교육과정 개발 모형에 의해 요구분석, 교육목표 설정, 교육목표 세분화, 교육내용 선정 및 조직의 과정을 거쳐 교과목 내용을 선정하고 전문가의 타당도 검증과정을 거쳐 창의융합교과목을 개발하였다. 창의융합교과목은 이론적 검토를 통해 창의성을 중심으로 다른 분야와 융합하는 교육내용을 구성하였으며 2학점의 교양교과목으로 제시하였고, 교육방법으로서 블랜디드 러닝을 활용한 온라인 수업과 팀별활동 중심의 오프라인 수업을 제시하였다. 또한, 교과과정을 이해, 적용, 종합·심화로 구분하여 학생들이 창의 융합적 사고의 개념을 이해하고 사고기법 및 전략학습 과정을 통해 적용하고 팀별 프로젝트를 통해 창의융합적 사고력을 향상할 수 있도록 하였다.
고농도의 경우 저농도와 비교하였을 때, 발생 빈도수의 차이와 발생 환경에 대한 차이로 예측 성능의 한계를 두드러지게 보이고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 인공신경망 알고리즘을 이용하여 저농도와 고농도로 분류하고 구분된 농도별로 특성을 학습시킨 두 가지 예측 모델을 통해 예측을 수행하는 모델을 제안하였다. 저농도와 고농도를 분류하기 위해 DNN 기반의 분류 모델을 설계하고 분류모델을 통해 구분된 저농도와 고농도를 기준으로 농도별 특성을 반영하기 위한 저농도 예측 모델과 고농도 예측 모델을 설계하였다. 농도별 예측 모델의 성능 평가 결과, 저농도 예측 정확도가 90.38%, 고농도 예측 정확도는 96.37% 의 예측 정확도를 보였다.
군사 비밀이나 조직의 기밀 데이터는 그 조직의 매우 중요한 자원이며 외부로부터의 접근이 차단되어야 한다. 그러나 최근 인터넷의 접근성이 높아짐으로써 보안이 중요한 이슈로 부상하고 있다. 이를 위해 네트워크 내부에 대한 공격이나 침입행위를 탐지하는 이상 행위 탐지 방법이 제안되었다. 그러나 대부분의 이상 행위 탐지는 외부로부터의 침입에 대한 측면만 다루고 있으며, 공격이나 침입보다 더 큰 피해를 입히는 내부 데이터의 유출에 대해서는 다루고 있지 않다. 또한 기존의 이상 행위 탐지 방법을 데이터 유출 탐지에 적용할 경우 네트워크 내부의 환경과 여러 가지 변수들이 고려되어 있지 않기 때문에 많은 문제점들이 발생한다. 따라서 본 논문에서는 데이터 유출 탐지를 위한 이상 행위 탐지(Data Exfiltrating Detection for Anomaly Detection : DEDfAD) 방법의 정확도 향상을 위하여 DEDfAD에서 고려되어야 하는 이슈 사항들에 대하여 기술하고, 프로파일 기반의 탐지 방법과 머신러닝 기반의 탐지 방법으로 분류하여 이들의 장단점을 분석한다. 또한 분류된 접근 방법을 중심으로 이슈들과의 비교분석을 통해 향후 연구 방향을 제시한다.
연구목적: 2022년 산업재해 현황 부가통계에서 건설업 사망사고자 현황을 보면 건설업 전체 사망사고자의 27.8%가 건설장비로 인해 발생하고 있다. 현장 대형화, 고층화 등으로 발생하는 순회 및 점검의 한계를 극복하기 위해 컴퓨터 비전 기술을 활용해 건설장비를 추출할 수 있는 모델을 구축하고 해당 모델의 정확도 및 현장 적용성에 대해 분석하고자 한다. 연구방법:본 연구에서는 건설장비 중 굴착기, 덤프트럭, 이동식 크레인의 이미지 데이터를 딥러닝 학습시킨 뒤 학습 결과를 평가 및 분석하고 건설현장에 적용하여 분석한다. 연구결과: 'A' 현장에서는 굴착기 및 덤프트럭의 객체를 추출하였으며, 평균 추출 정확도는 굴착기 81.42%, 덤프트럭 78.23%를 나타냈다. 'B' 현장의 이동식 크레인은 78.14%의 평균 정확도를 보여줬다. 결론: 현장 안전관리의 효율성이 증가할 수 있고, 재해발생 위험요인을 최소화 할 수 있을것이라 본다. 또한, 본 연구를 기반으로 건설현장에 스마트 건설기술 도입에 관한 기초적인 자료로 활용이 가능하다.
이 단보에서는 차세대 중형위성 4호(농림위성)의 활용에 앞서, 농림위성과 분광밴드가 유사한 Sentinel-2 위성영상에 대하여 대기보정을 모의하였다. second simulation of the satellite signal in the solar spectrum - vector(6SV)2.1 복사전달모델과 기계학습의 일종인 랜덤 포레스트(random forest, RF)를 활용하여 6SV2.1을 모사한 RF 기반의 대기보정 모델을 개발한 결과, 6SV2.1로 산출된 반사도와 RF 모델로 예측된 반사도 간의 유사도가 매우 높게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.