• Title/Summary/Keyword: tbm

Search Result 580, Processing Time 0.028 seconds

Analysis of correlation between shield TBM construction field data and settlement measurement data (쉴드 TBM 시공데이터와 지반침하 계측데이터 간 상관성 분석)

  • Jung, Ye-Rim;Nam, Kyoung-Min;Kim, Han-Eol;Ha, Sang-Gui;Yun, Ji-Seok;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.79-94
    • /
    • 2022
  • The demand for tunnel construction is increasing as part of underground space development due to urban saturation. The shield TBM method minimizes vibration and noise and minimizes ground deformation that occurs simultaneously with excavation, and shield TBM is generally applied to tunnel construction in urban areas. The importance of urban ground settlement prediction is increasing day by day, and in the case of shield TBM construction, ground deformation is minimized, but ground settlement due to tunnel excavation inevitably occurs. Therefore, in this study, the correlation between shield TBM, which is highly applicable to urban areas, and ground settlement is analyzed to suggest the shield TBM construction factors that have a major effect on ground settlement. Correlation analysis was performed between the shield TBM construction data and ground settlement measurement data collected at the actual site, and the degree of correlation was expressed as a correlation coefficient "r". As a result, the main construction factors of shield TBM affecting ground settlement were thrust force, torque, chamber pressure, backfill pressure and muck discharge. Based on the results of this study, it is expected to contribute to the presentation of judgment criteria for major construction data so that the ground settlement can be predicted and controlled in advance when operating the shield TBM in the future.

Rock TBM design model derived from the multi-variate regression analysis of TBM driving data (TBM 굴진자료의 다변량 회귀분석에 의한 암반대응형 TBM의 설계모델 도출)

  • Chang, Soo-Ho;Choi, Soon-Wook;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.531-555
    • /
    • 2011
  • This study aims to derive the statistical models for the estimation of the required specifications of a rock TBM as well as for its cutterhead design suitable for a given rock mass condition. From a series of multi-variate regression analysis of 871 TBM driving data and 51 linear rock cutting test results, the optimum models were newly proposed to consider a variety of rock properties and mechanical cutting conditions. When the derived models were applied to two domestic shield tunnels, their predictions of cutter penetration depth, cutter acting forces and cutter spacing were very close to real TBM driving data, showing their high applicability.

Analysis on prediction models of TBM performance: A review (TBM 굴진성능 예측모델 분석: 리뷰)

  • Lee, Hang-Lo;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.245-256
    • /
    • 2016
  • Prediction of TBM performance is very important for machine selection, and for reliable estimation of construction cost and period. The purpose of this research is to analyze the evaluation process of various prediction models for TBM performance and applied methodology. Based on the solid literature review since 2000, a classification system of TBM performance prediction model is proposed in this study. Classification system suggested in this study can be divided into two stages: selection of input parameter and application of prediction techniques. We also analyzed input and output parameters for prediction model and frequency of use. Lastly, the future research and development trend of TBM performance prediction is suggested.

Current Status of Technical Development for TBM Simulator (국내·외 TBM 시뮬레이터 개발 현황)

  • Choi, Soon-Wook;Lee, Chulho;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • Professional TBM Operator is in short supply worldwide, and insufficient construction experience of new personnel using TBM can lead to a decline in response capabilities when various construction risks occur. The fact that the TBM construction quality greatly depends on the skill and experience of the TBM operator, and the decrease in productivity due to insufficient skilled manpower, and the decrease in safety due to the decrease in skill level are frequently discussed problems in the TBM industry. To this end, several overseas companies and organizations have developed simulators, and a simulator is being developed in Korea. The International Tunneling Association is planning a comprehensive training, including classroom training, e-learning, simulator training and field training. Given the progress at home and abroad, TBM driver training and formal recognition of training through certification or licensing is expected to become the norm in the near future.

Review of Technical Issues for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM의 시공을 위한 기술적 고찰)

  • Jeong, Hoyoung;Zhang, Nan;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.1-24
    • /
    • 2018
  • The use of TBM (tunnel boring machine) gradually increases in worldwide tunneling projects. TBM machine are often applied to more difficult and complex geological conditions in urban area, and many problems and difficulties have been reported due to these geological conditions. However, in Korea, there is a lack of research on difficult grounds so far. This paper discussed general aspects of investigation method, and problems of TBM tunneling in difficult grounds. Construction cases that passed through the difficult grounds in worldwide were analyzed and the typical difficult grounds were classified into 11 cases. For each case, the definition and general problems were summarized. Particularly, for mixed ground and boulder ground, and fault zone, which are frequent geological conditions in urban area with shallow depth, classification system, investigation methods and major considerations were discussed, and proposed the direction of future research. This paper is a basic study for the development of TBM construction technology in difficult ground, and it is expected that it will be useful for related research and construction of TBM in difficult ground in the future.

Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate (뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2014
  • Recently, tunnelling with TBM is getting popular for the construction of cable tunnel in urban area. Mechanized tunnelling method using shield TBM has various advantages such as minimization of ground settlement and prevention of vibration induced by blasting that should be accompanied by conventional tunnelling. In Korea, earth pressure balance (EPB) type shield TBM has been mainly used. Despite the popularity of EPB shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Especially, the effect of backfill grout injection on the behavior of cable tunnel driven by shield TBM is investigated in this study. Tunnelling with shield TBM is simulated using 3D FEM. The distance of backfill grout injection from the end of shield skin varies. Sectional forces such as axial force, shear force and bending moment are monitored. Vertical displacement at the ground surface is measured. Futhermore, the relation between volume loss and the distance of backfill grout injection from the end of skin plate is derived. Based on the stability analysis with the results obtained from the numerical analysis, the most appropriate injection distance can be obtained.

A study on the clogging of shield TBM cutterhead opening area according to the characteristics of cohesive soil content (점성토 함량 특성에 따른 shield TBM cutterhead 개구부의 폐색현상에 관한 연구)

  • Bang, Gyu-Min;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.265-280
    • /
    • 2021
  • Population density due to urbanization is making people interested in underground space development and much interest in TBM construction with low vibration and noise. This led to a lot of research on TBM. However, research on the characteristics of the cutterhead opening of the TBM equipment being occluded under the ground conditions under which it is excavated is insufficient. Accordingly, a study was conducted to investigate clogging of the cutterhead opening during the shield TBM rolling. To identify the clogging of cutterhead openings in SHIELD TBM equipment, the reduced model experiment was divided into clay rate (10%, 30%, 50%, 60%), cutterhead opening rate (30%, 50%, 60%), and cutterhead rotation direction (one-way, two-way) and rotational speed (3 RPM) and conducted in 36 cases. Results of scale model test on shield TBM clogging, it was analyzed that the ground condition containing clay soil increased the clogging effect in both directions than the unidirectional rotation, and that the lower the rotational speed of the cutterhead, the less the clogging effect. Accordingly, the direction of cutterhead rotation, rotational speed and opening rate are calculated by taking into account ground conditions during ground excavation, the clogging effect can be reduced. It is believed to be effective in saving air as the clogging effect is reduced. Therefore, this study is expected to be an important material for domestic use of shield TBM.

Development and Application of the Assessment System of TBM Tunnelling Procedure (TBM 터널 공정 분석시스템의 개발 및 적용)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.455-464
    • /
    • 2003
  • Four assessment systems for planning and evaluation of TBM tunnelling are discussed, and their characteristics and input data are analyzed. Two of the systems are determined to be adequate for post-evaluation of TBM performance because the time, such as repair time, downtime, installation time and transport time, must be included for calculations. The others are adequate for pre-planning because the basic data of the systems consist of only the basic properties of rocks and rock masses, and the specification of TBM. In order to apply these assessment systems, a number of equations, graphs and charts are generally required, which seems to be very inconvenient and complicated. In this study, therefore, a user-friendly program operated on Windows system is developed, and each system can be selected by the corresponding input data. It will be possible fer tunnel engineers to select a system according to their objectives and available input data, and to apply the system to TBM tunnel project.

Continuous Excavation Type TBM Parts Modification and Control Technology for Improving TBM Performance (TBM 굴진향상을 위한 연속굴착형 TBM 부품개조 및 제어기술 소개)

  • Young-Tae, Choi;Dong-Geon, Lee;Mun-Gyu, Kim;Joo-Young, Oh;Jung-Woo, Cho
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.345-352
    • /
    • 2022
  • The existing NATM (New Austrian Tunneling Method) has induced civil compliants due to blasting vibration and noise. Machanized excavation methods such as TBM (Tunnel Boring Machine) are being adopted in the planning and construction of tunneling projects. Shield TBM method is composed of repetition processes of TBM excavation and segment installation, the machine has to be stopped during the later process. Consecutive excavation technology using helical segment is under developing to minimize the stoppage time. The modification of thrust jacks and module are planned to ensure the advance force acting on the inclined surface of helical segment. Also, the integrated system design of hydraulic circuit will be remodeled. This means that the system deactivate the jacks on the installing segment while the others automatically act the thrusting forces on the existing segments. This report briefly introduces the mechanical research part of the current consecutive excavation technological development project of TBM.

Evaluation of the applicability of TBM performance prediction models based on field data (현장 굴진자료 분석에 의한 TBM 성능예측모델의 적용성 평가)

  • Oh, Ki-Youl;Chang, Soo-Ho;Kim, Sang-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.803-812
    • /
    • 2008
  • Along with the increasing demand for automatic and mechanical tunnel excavation methods in Korea, the Tunnel Boring Machine (TBM) method of tunnel excavation has become increasingly popular. However, in spite of this rising demand, few studies have been performed on the TBM method, in Korea. For this reason, this study focused on evaluation of the applicability of TBM performance prediction models based on field data in order to contribute to the basic and essential parts of TBM designation and the TBM method of tunnel excavation in Korea. These rock properties can be defined as the mechanical and physical factors of rock that have an influence on a disc cutter's ability to cut rock, and provide information for the evaluation of the applicability of field data. Based on outcomes from these tests, applicability of the prediction model was evaluated and the predicted performance of a TBM was compared with real field data obtained from four different TBM construction sites in Korea.

  • PDF