Journal of the Institute of Convergence Signal Processing
/
v.5
no.4
/
pp.263-270
/
2004
Recently, wavelet transform have been applied to various kinds of problems in many fields. In this paper, we propose method of Daubechies wavelet to detect several kinds of important characteristic waves in tasks EEG that are needed to diagnose EEG. We show that our system could be attained higher performance in detecting characteristic waves than the other methods. In this system, the architecture of the neural network is a three layered feed-forward networks with one hidden layer which implements the error back propagation teaming algorithm. Applying the algorithms to 4 subjects show 92% classification rates. The proposed system shows a little more accurate diagnosis for task EEG by Wavelet and neural network. From the simulation results by the implemented system, we demonstrated this research can be reduce doctor's labors and quantitative diagnosis of task EEG.
Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
Proceedings of the IEEK Conference
/
2004.08c
/
pp.671-674
/
2004
We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.2
/
pp.367-372
/
2023
In this paper, we analyzed through the EEG signals how musical stimulus affects learning activities. Musical stimuli were divided into sedative and stimulative tendency music, preferred and non-preferred music, and the learning activity tasks were divided into mathematics tasks and memorization tasks. The signals measured in the EEG experiments were analyzed with the power spectrum of SMR waves known to be related to human concentration. Those spectra used for quantitative comparison in this paper. As a result the power of the EEG signals was observed to be greater than the case where music was given as a stimulus. Regardless of the type of task, the power of the EEG signals was observed to be greater in the case of sedative tendency than in the case of stimulative tendency, and the power of the EEG signals was observed to be greater in the case of favorite music than in the case of unfavorite music. From these results, it is estimated that if the musical stimulus exists, in the case of sedative tendency music, and in the case of favorite music, concentration can be increased than in the relative case.
In this paper, we propose an EEG-based mental state prediction method during a mental tasks. In the experimental task, a subject goes through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining selection time. EEG signals from four subjects were recorded while they performed three mental tasks. Feature vectors defined by these representations were classified with a standard, feed-forward neural network trained via the error back-propagation algorithm. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or cognitive decision discrimination methods.
Electroencephalogram(EEG) would be the most objective psychophysiological research technique on human errors though few research has been taken yet. This study aimed to get characteristics of human error while committing simple Odd-Ball tasks by utilizing the power spectrum technique of EEG data. Each experiment was composed of 3 tasks with different rules, and three young undergraduate students participated in this study as paid subjects. The result showed that subject and the interaction of subject and task factors were statistically significant on variation of power of $\alpha$ and $\beta$ bands which implied there would exist groups with homogeneity in their response. And though the variation of band powers due to task factors were not so great as to get statistical significance, it implied that the task requiring decoding process would be more strange to human beings than the task merely requiring psychological recall process.
This study investigated highschool students' brain waves on functional tasks such as a transition(F task) from equation to graph and the other transition(G task) vice versa. A total of 39 students participated in the study who attended a high school located in Gyunggi province. These students were divided into two groups, HMA and LMA by MASS test revised by Ko, & Yi (2012). The functional tasks for the stroop task to measure EEG were provided from a previous study, Seok(2015). The results indicated two groups on G tasks showed deeper and wider brain waves which demonstrated G tasks were more difficult than F tasks. However, HMA group had an effect of the non-psychological program which had given more chances on G tasks rather than F tasks within Students' Zone of Proximal Development. Also, HMA group's brain waves had more ranges in amplitude and width of waves. These results imply that the characteristics of students' brain waves with math anxiety are consistent to the previous studies.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.11
/
pp.1277-1282
/
2014
In this paper, we aimed to analysis EEG signals related to concentration of adolescents using letter visual stimulus to induce the concentration. The visual stimulus tasks were searching errors of propositional particle in several sentences. In the EEG signals, we specially focussed on SMR waves and mid-beta waves according to the results of a preceding research. Therefore we presented position of channel and frequency band of mid-beta significantly related to the concentration waves as the experimental results.
BCI(Brain-Computer Interface) is studied to control the machines with brain. In this study, an EEG(Electroencephalography) signal classification model is proposed. The model gets EEG pattern from each subject's brain and extracts characteristic features. The model discriminates the EEG patterns by using those extracted characteristic features of each subject. The proposed method classifies each pair of the given tasks and combines the results to give the final result. Four tasks such as rest, movement, mental-arithmetic calculation and point-fixing were used in the experiment. Over 90% of the trials, the model yielded successful results. The model exploits characteristic features of the subjects and the weight table that was produced after training. The analysis results of the model such as its high success rates and short processing time show that it can be used in a real-time brain-computer interface system.
Purpose: The purpose of this study was to investigate changes in EEG through attention. Concentration training and performing tasks are important factors in the improvement of motor learning ability. Methods: In the experiment, 22 healthy people were divided into two groups: the trail making test (TMT) group and the computerized neurocognitive function test (CNT) group. A one-way Neuro Harmony M test to see whether there was a significant difference among the groups. Results: The TMT group showed a significant increase in ${\alpha}$ wave, ${\alpha}$ wave sequence, and ${\beta}$ wave sequence; however, there were no significant differences in SMR wave, SMR wave sequence, and ${\beta}$ wave. The CNT group showed increases in ${\alpha}$ wave, ${\alpha}$ wave sequence, SMR wave, SMR wave sequence, and ${\beta}$ wave sequence; however, there was no significant difference in ${\beta}$ wave. In EEGs before and after two performance tasks were changed, there were significant differences in ${\beta}$ wave, SMR wave, SMR wave sequence; however, there were no significant differences in ${\alpha}$ wave sequence, ${\beta}$ wave, and ${\beta}$ wave sequence. Conclusion: Attention training and concentration training offer feedback and repetition for constant stimulus and response. Moreover, attention training and concentration training can contribute to new studies and motivation by developing fast sensory and motor skills through acceptable visual and auditory stimulation.
Journal of the Korean Society for Library and Information Science
/
v.50
no.3
/
pp.361-381
/
2016
This study proposed two topical relevance models, simple and complex models, using EEG/ERP techniques. In the simple model regarding simple search tasks, N300 and P3b components are used. The N300 is specific to the semantic processing of pictures and the P3b reflects mechanisms involved in the decision about whether an external stimulus matches or does not match an internal representation of a specific category. In the complex model regarding complex search tasks, on the other hand, N400 and P600 components are used. The N400 reflects activation of an amodel system that integrates both image-based and conceptual representations into a context, whereas the P600 is related to complex cognitive processes. Our research results can be used as a source to design an EEG-based interactive multimedia system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.