An EEG Classifier Representing Subject's Characteristics for Brain-Computer Interface

뇌-컴퓨터 인터페이스를 위한 개인의 특성을 반영하는 뇌파 분류기

  • Published : 2000.01.15

Abstract

BCI(Brain-Computer Interface) is studied to control the machines with brain. In this study, an EEG(Electroencephalography) signal classification model is proposed. The model gets EEG pattern from each subject's brain and extracts characteristic features. The model discriminates the EEG patterns by using those extracted characteristic features of each subject. The proposed method classifies each pair of the given tasks and combines the results to give the final result. Four tasks such as rest, movement, mental-arithmetic calculation and point-fixing were used in the experiment. Over 90% of the trials, the model yielded successful results. The model exploits characteristic features of the subjects and the weight table that was produced after training. The analysis results of the model such as its high success rates and short processing time show that it can be used in a real-time brain-computer interface system.

인간의 생각만으로 기계를 작동할 수 있게 하는 인터페이스 시스템에 관한 연구 분야인 BCI (Brain-Computer Interface)에서는 피험자의 두피로부터 EEG(Electroencephalograph)를 측정하고 인식하여 뇌 상태를 알아내고 그 결과를 기계의 조종에 응용하는 방법을 사용한다. 본 연구에서는 각 개인으로부터 고유의 뇌파인 EEG를 얻고 신호처리하여 인식하는 인식모델을 제안하였다. 제안된 모델은 특정 작업을 수행하고 있을 때의 EEG 신호로부터 인식에 중요한 영향을 미치는 특징들을 추출해 내고, 이를 인식에 이용한다. 제안된 모델은 인식할 EEG 패턴들을 두개씩 분류하여 각각을 인식한 후, 그 결과를 종합하여 최종적인 인식결과를 얻도록 하였다. 본 연구의 실험에서는 피험자가 4가지의 작업을 수행하는 동안 얻어지는 4가지 EEG 패턴을 인식하였다. 제안된 모델은 90%이상의 높은 인식율을 보였고, 각 피험자에게 독특하게 존재하는 특징들을 인식 결과로서 제공하였다. 제안된 모델의 높은 인식율과 빠른 처리속도는 실시간 BCI 시스템에 응용될 수 있는 가능성을 보여주고 있다.

Keywords

References

  1. Charles W. Anderson and Saikumar V. Devulapalli, 'Determining mental state from EEG signals using parallel implementations of neural networks,' http://www.cs.colostate.edu/~anderson
  2. Charles W. Anderson, Erik A. Stolz, and Sanyogita Shamsunder, 'Discriminating mental tasks using EEG represented by AR models,' http://www.cs.colostate.edu/~anderson
  3. Dennis J. McFarland, Gregory W. Neat, Richard F. Read, and Jonathan R. Wolpaw, 'An EEG-based method for graded cursor control,' Psychobiology, vol. 21, no. 1, pp. 77-81, 1993
  4. Grant R. McMillan, and Gloria L. Calhoun, 'Direct Brain Interface utilizing self-regulation of steady-state visual Evoked Response,' http://www.cdd.sc.edu
  5. G. Pfurtscheller and Chistina Neuper, 'Simultaneous EEG 10Hz desynchronization and 40Hz synchronization during finger movements,' Neuro Report, vol. 3, pp. 1057-1060, 1992
  6. G. Pfurtscheller, D. Flotzinger, and Joachim Kalcher, 'Brain-Computer Inteface-a new communication device for handicapped persons,' Journal of Microcomputer Applications, vol. 16, pp. 293-299, 1993
  7. G. Pfurtscheller and C. Neuper, 'Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man,' Neuroscience Letters, vol. 174, pp. 93-96, 1994 https://doi.org/10.1016/0304-3940(94)90127-9
  8. G. Pfurtscheller, M. Pregenzer, and C. Neuper, 'Visualization of sensorimotor areas involved in preparation for hand movement based on classification of mu and central beta rhythms in single EEG trials in man,' Neuroscience Letters, vol. 181, pp. 43-46, 1994 https://doi.org/10.1016/0304-3940(94)90556-8
  9. Jonathan R. Wolpaw, Dennis J. McFarland, Gregory W. Neat, and Catherine A. Forneris, 'An EEG-based brain-computer interface for cursor control,' Electroencephalo Graphy and Clinical Neurophysiology, vol. 78, pp. 252-259, 1991
  10. J. Kalcher, Doris Flotzinger, Ch. Neuper, S. Golly, and G. Pfurtscheller, 'Graz brain-computer interface 2: towards communication between humans and computers based on online classification of three different EEG patterns,' Medical and Biological Engineering and Computing, vol. 34, pp. 382-388, 1996 https://doi.org/10.1007/BF02520010
  11. M. Pregenzer, G. Pfurtscheller, and D. Flotzinger, 'Selection of electrode positions for an EEG-based Brain Coputer Interface,' Biomedizinische Technik, Band 39, Heft 10, pp. 264-269, 1994
  12. Zarchy A. Keirn and Jorge I. Aunon, 'Man-Machine Communications-Through Brain-Wave Processing,' IEEE Engineering in Medicine and Biology Magazine, pp. 55-57, 1990 https://doi.org/10.1109/51.62907
  13. K. M. Lee, D. H. Kawk, and K. H. Lee, 'Fuzzy Inference Neural Network for Fuzzy Model Tuning,' IEEE Transactions on Systems, Man and Cybernetics, vol. 26, no. 4, pp. 637-645, 1996 https://doi.org/10.1109/TSMCB.1996.517039
  14. K. H. Lee, K. A. Seong, and K. M. Lee, 'Hierarchical Partition of Nonstructured Concurrent Systems,' IEEE Transactions on Systems, Man and Cybernetics, vol. 27, no. 1, pp. 105-108, 1997 https://doi.org/10.1109/3477.552189
  15. K. M. Lee, D. H. Kwak, and K. H. Lee, 'Tuning of Fuzzy Models by Fuzzy Neural Networks,' Fuzzy Sets and Systems, vol. 76, pp. 47-61, 1995 https://doi.org/10.1016/0165-0114(95)00027-I