• Title/Summary/Keyword: task assignment problem

Search Result 39, Processing Time 0.027 seconds

The Workload Assignment Problem in consideration of the Worker Pairing and the Workload Balancing (작업조 구성과 작업량 평준화를 고려한 작업할당문제에 관한 연구)

  • Shim, Dong-Hyun;Lee, Young-Hoon
    • IE interfaces
    • /
    • v.22 no.3
    • /
    • pp.263-277
    • /
    • 2009
  • This research deals with a task assignment problem to worker group which consists of one master and one assistant. Each task must be assigned to only one worker group and it is possible to make a pair of each master and each assistant to organize a worker group. A worker group may have more than one task assigned to it, but the workloads of each worker group must be balanced within the allowable range. This problem can be formulated mathematically using the Mixed Integer Programming(MIP), where the objective function is to minimize the total assignment cost. A two phase heuristic algorithm is suggested in order to find approximate solutions. The first phase is to obtain an initial solution, where the initial assignment is performed to follow the workload adjustment. In the second phase, the solution is improved through the repeated process of the exchange and the assignment adjustment. Numerical experiments have been performed to evaluate the performance of the heuristic algorithm.

Sample Average Approximation Method for Task Assignment with Uncertainty (불확실성을 갖는 작업 할당 문제를 위한 표본 평균 근사법)

  • Gwang, Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2023
  • The optimal assignment problem between agents and tasks is known as one of the representative problems of combinatorial optimization and an NP-hard problem. This paper covers multi agent-multi task assignment problems with uncertain completion probability. The completion probabilities are generally uncertain due to endogenous (agent or task) or exogenous factors in the system. Assignment decisions without considering uncertainty can be ineffective in a real situation that has volatility. To consider uncertain completion probability mathematically, a mathematical formulation with stochastic programming is illustrated. We also present an algorithm by using the sample average approximation method to solve the problem efficiently. The algorithm can obtain an assignment decision and the upper and lower bounds of the assignment problem. Through numerical experiments, we present the optimality gap and the variance of the gap to confirm the performances of the results. This shows the excellence and robustness of the assignment decisions obtained by the algorithm in the problem with uncertainty.

A Distributed Task Assignment Method and its Performance

  • Kim, Kap-Hwan
    • Management Science and Financial Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-51
    • /
    • 1996
  • We suggest a distributed framework for task assignment in the computer-controlled shop floor where each of the resource agents and part agents acts like an independent profit maker. The job allocation problem is formulated as a linear programming problem. The LP formulation is analyzed to provide a rationale for the distributed task assignment procedure. We suggest an auction based negotiation procedure including a price-based bid construction and a price revising mechanism. The performance of the suggested procedure is compared with those of an LP formulation and conventional dispatching procedures by simulation experiments.

  • PDF

Multi Agents-Multi Tasks Assignment Problem using Hybrid Cross-Entropy Algorithm (혼합 교차-엔트로피 알고리즘을 활용한 다수 에이전트-다수 작업 할당 문제)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.4
    • /
    • pp.37-45
    • /
    • 2022
  • In this paper, a multi agent-multi task assignment problem, which is a representative problem of combinatorial optimization, is presented. The objective of the problem is to determine the coordinated agent-task assignment that maximizes the sum of the achievement rates of each task. The achievement rate is represented as a concave down increasing function according to the number of agents assigned to the task. The problem is expressed as an NP-hard problem with a non-linear objective function. In this paper, to solve the assignment problem, we propose a hybrid cross-entropy algorithm as an effective and efficient solution methodology. In fact, the general cross-entropy algorithm might have drawbacks (e.g., slow update of parameters and premature convergence) according to problem situations. Compared to the general cross-entropy algorithm, the proposed method is designed to be less likely to have the two drawbacks. We show that the performances of the proposed methods are better than those of the general cross-entropy algorithm through numerical experiments.

A Hierarchical Solution Approach for Occupational Health and Safety Inspectors' Task Assignment Problem

  • Arikan, Feyzan;Sozen, Songul K.
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.154-166
    • /
    • 2021
  • Background: Occupational health and safety (OHS) is a significant interest of all governments to prevent workplace hazards. Although appropriate legislation and regulations are essentials for the protection of workers, they are solely not enough. Application of them in practice should be secured by an efficient inspection system. Fundamental components of an inspection system are inspectors and their audit tasks. Maintaining the fair balanced task assignment among inspectors strictly enhances the efficiency of the overall system. Methods: This study proposes a two-phased goal programming approach for OHS inspectors' task assignments and presents a case study. Results: The solution approach gives the balanced assignment of inspectors to the workplaces in different cities of the country in the planning period. The obtained schedule takes into account the distances covered by the work places and the number of the workplaces' employees to be audited and pays attention to the human factors by considering the preferences of the inspectors. The comparisons between the obtained optimal schedule and the implemented one that is produced manually show that the approach not only maintains the technical requirements of the problem, but also provides social and physical balance to the task assignment. Conclusion: Both the approach and the application study are expected to offer fruitful inspirations in the area of safety management and policy and they provide a good guide for social policy and organizational aspects in the field of OHS inspectors' task assignment.

A New Heuristic for the Generalized Assignment Problem

  • Joo, Jaehun
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.31-52
    • /
    • 1997
  • The Generalized Assignment Problem(GAP) determines the minimum assignment of n tasks to m workstations such that each task is assigned to exactly one workstation, subject to the capacity of a workstation. In this paper, we presented a new heuristic search algorithm for GAPs. then we tested it on 4 different benchmark sample sets of random problems generated according to uniform distribution on a microcomputer.

  • PDF

A New Heuristic for the Generalized Assignment Problem

  • 주재훈
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.1
    • /
    • pp.31-31
    • /
    • 1989
  • The Generalized Assignment Problem(GAP) determines the minimum assignment of n tasks to m workstations such that each task is assigned to exactly one workstation, subject to the capacity of a workstation. In this paper, we presented a new heuristic search algorithm for GAPs. Then we tested it on 4 different benchmark sample sets of random problems generated according to uniform distribution on a microcomputer.

Task Assignment of Multiple UAVs using MILP and GA (혼합정수 선형계획법과 유전 알고리듬을 이용한 다수 무인항공기 임무할당)

  • Choi, Hyun-Jin;Seo, Joong-Bo;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.427-436
    • /
    • 2010
  • This paper deals with a task assignment problem of multiple UAVs performing multiple tasks on multiple targets. The task assignment problem of multiple UAVs is a kind of combinatorial optimization problems such as traveling salesman problem or vehicle routing problem, and it has NP-hard computational complexity. Therefore, computation time increases as the size of considered problem increases. To solve the problem efficiently, approximation methods or heuristic methods are widely used. In this study, the problem is formulated as a mixed integer linear program, and is solved by a mixed integer linear programming and a genetic algorithm, respectively. Numerical simulations for the environment of the multiple targets, multiple tasks, and obstacles were performed to analyze the optimality and efficiency of each method.

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

Task Reallocation in Multi-agent Systems Based on Vickrey Auctioning (Vickrey 경매에 기초한 다중 에이전트 시스템에서의 작업 재할당)

  • Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.8B no.6
    • /
    • pp.601-608
    • /
    • 2001
  • The automated assignment of multiple tasks to executing agents is a key problem in the area of multi-agent systems. In many domains, significant savings can be achieved by reallocating tasks among agents with different costs for handling tasks. The automation of task reallocation among self-interested agents requires that the individual agents use a common negotiation protocol that prescribes how they have to interact in order to come to an agreement on "who does what". In this paper, we introduce the multi-agent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest the Vickery auction as an interagent negotiation protocol for solving this problem. In general, auction-based protocols show several advantageous features: they are easily implementable, they enforce an efficient assignment process, and they guarantce an agreement even in scenarios in which the agents possess only very little domain-specific Knowledge. Furthermore Vickrey auctions have the additional advantage that each interested agent bids only once and that the dominant strategy is to bid one′s true valuation. In order to apply this market-based protocol into task reallocation among self-interested agents, we define the profit of each agent, the goal of negotiation, tasks to be traded out through auctions, the bidding strategy, and the sequence of auctions. Through several experiments with sample multi-agent TSPs, we show that the task allocation can improve monotonically at each step and then finally an optimal task allocation can be found with this protocol.

  • PDF