• Title/Summary/Keyword: tartrate-resistant acid phosphatase

Search Result 136, Processing Time 0.031 seconds

The effects of indomethacin on distribution and expression of COX-2 and IGF-I in the mandibular condyle of growing dogs (인도메타신투여가 개의 하악두에서 COX-2와 IGF-I의 발현과 분포에 미치는 영향)

  • Nam, Jong-Hyun;Lee, Ki-Soo;Kang, Yoon-Goo
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.351-360
    • /
    • 2005
  • This study aimed to investigate the effects of indomethacin on distribution and expression of COX-2 and IGF-1 in the mandibular condyle ofi growing dogs and to examine the number of chondroclasts around the mineralization zone indomethacin inhibits prostatlandin $E_2$ production in the tissue by inhibiting synthesis of cyclooxygenase 2. Prostaglandin $E_2$ stimulates insulin-like growth factor synthesis. Insulin-like growth factor stimulates growth of mandibular condylar cartilage. Eight mongrel dogs. aged 13-14 weeks, were divided into 4 groups. Group 1 and group 2 were administered indomethacin 2 mg/Kg/day orally two times a day for 7 days and 14 days respectively. Group 3 were administered indomethacin 8mg/Kg/day orally 2 times a day for 14 days, and 4he control group were administered a placebo. The mandibular condyle heads were sectioned in $5{\mu}m$ thickness The specimens were stained with H-E staining. COX-2 immunohistochemical staining and IGF-1 immunohistochemical staining and examined under microscope. After TRAP staining, the number of chondroclasts were calculated The observed results were as follows: Indomethacin inhibited expression and distribution of COX-2 and IGF-1 on the proliferative zone of condylar cartillage. Indomethacin decreased the number of chondroclastes on the mineralization zone by a time-dependent manner (P<0.05). Indomethacin inhibited expression and distribution of IGF-I by a dose and time-dependent manner. These results show that indomethacin inhibited expression and distribution of COX-2 and IGF-1 on the proliferative zone of condylar cartilage and decreased the number of chondroclasts and suggests that when indomethacin is administered for a long time, condyle growth could be delayed.

Effect of Water Extract of Saussureae Radix in RANKL-induced Osteoclast Differentiation (파골세포 분화에 목향 물 추출물의 효과)

  • Lee, Myeung-Su;Kim, Jeong-Joong;Oh, Jae-Min;Choi, Min-Kyu;Song, Mi-Jin;Ahn, Yong-Hwan;Lee, Jeong-Hugh;Jeon, Byung-Hoon;Park, Kie-In;Jang, Sung-Jo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.516-520
    • /
    • 2011
  • Osteoporosis is social problem around the world, because fracture of old age may lead to critical medical condition. Osteoclast is a main target for prevention and treatment of osteoporosis due to their responsibility for bone resorption. Saussureae Radix has been known that has gastro-protective, bronchodilatory effect and has a anti-biotic effect. Saussureae Radix has been widely used in Oriental medicine. However, the effect of extract of Saussureae Radix in osteoclast differentiation remains unknown. Thus, we examined the effect of Saussureae Radix in receptor activator of nuclear factor-${\kappa}$B ligand (RANKL)-induced osteoclast differentiation. From the results of our study, Here we found that Saussureae Radix significantly inhibited osteoclast differentiation induced by RANKL. Saussureae Radix suppressed the activation of NF${\kappa}$B in bone marrow macrophages (BMMs) treated with RANKL. Also, Saussureae Radix significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Saussureae Radix greatly inhibited the protein expression of c-fos and NFATc1. especially in the case of NFATc1 expression, a master transcription factor of the differentiation of osteoclasts is very important step for osteoclastogenesis. These results demonstrate that Saussureae Radix may be useful treatment option of bone-related disease such as osteoporosis and rheumatoid arthritis.

Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model

  • Park, Chan-Mi;Kim, Hye-Min;Kim, Dong Hyun;Han, Ho-Jin;Noh, Haneul;Jang, Jae-Hyuk;Park, Soo-Hyun;Chae, Han-Jung;Chae, Soo-Wan;Ryu, Eun Kyoung;Lee, Sangku;Liu, Kangdong;Liu, Haidan;Ahn, Jong-Seog;Kim, Young Ock;Kim, Bo-Yeon;Soung, Nak-Kyun
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.855-861
    • /
    • 2016
  • Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-${\kappa}B$ ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.

Effect of Water Extract of Rubi Fructus in RANKL-induced Osteoclast Differentiation (파골세포 분화에 미치는 복분자 물 추출물의 효과)

  • Oh, Jae-Min;Lee, Myeung-Su;Kim, Jeong-Joong;Lee, Jeong-Hugh;Chae, Soo-Uk;Kim, Ha-Young;Jeon, Byung-Hoon;Park, Kie-In;Moon, Seo-Young;Cho, Hae-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.669-673
    • /
    • 2011
  • To prevent and treat the osteoporotic fracture, more attention should be paid in old age patients. Osteoclast which has ability to bone resorption is originated from hematopoietic cell line and plays a key role osteoporotic bone loss. Rubi Fructus has been widely used in Oriental medicine. Extracts of the leaves and fruit of Rubus species have been used in various countries as natural remedies to treat diabetes, infections, colic, and burns. However, the effect of extract of Rubi Fructus (fruit of Rubus coreanus Miq.) in osteoclast differentiation remains unknown. Thus, we evaluated the effect of Rubi Fructus on receptor activator of nuclear factor-kB ligand (RANKL)-induced osteoclast differentiation. Here we found that Rubi Fructus significantly inhibited osteoclast differentiation induced by RANKL. Rubi Fructus suppressed the activation of p38 pathway and NFkB in bone marrow macrophages (BMMs) treated with RANKL. Also, Rubi Fructus significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Rubi Fructus greatly inhibited the protein expression of c-fos and NFATc1. especially in the case of NFATc1 expression, a master transcription factor of the differentiation of osteoclasts is very important step for osteoclastogenesis. Taken together, our results demonstrated that Rubi Fructus may be useful treatment option of bone-related disease such as osteoporosis and rheumatoid arthritis.

Odontoclast and Osteoclast Formation in Rats with Ligature-Induced Periodontitis (치주염 유발 쥐에서 상아질파괴세포와 뼈파괴세포의 형성)

  • Lee, Dong-Eun;Kim, Ji-Hye;Shin, Dong-Ha;Cha, Jeong-Heon;Bak, Eun-Jung;Yoo, Yun-Jung
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.295-300
    • /
    • 2015
  • Odontoclasts and osteoclasts resorb tooth root and alveolar bone, respectively. Many studies have focused on osteoclast formation in periodontitis, but effect of periodontitis on odontoclast formation is not clearly clarified. In this study, we observed formation of odontoclasts as well as osteoclasts in rats with ligature-induced periodontitis. To induce periodontitis, ligatures were placed around the first molars in left mandibles of rats. Rats were sacrificed at days 1, 3, and 10 after ligation. After tartrate resistant acid phosphatase (TRAP) staining in mandible section, the number of TRAP-positive odontoclasts and osteoclasts were histologically counted along the root and the alveolar bone surfaces of tooth, respectively. Odontoclasts increased until day 10 in mesial and furcation root surface, but did not increase in distal root surface. When compared odontoclast formation to osteoclast formation in mesial surface, osteoclasts peaked at day 3, and then decreased gradually, whereas odontoclasts were continuously increased until day 10. The number of odontoclasts was lower than that of osteoclasts before and after periodontitis induction. These indicate that periodontitis increased formation of odontoclasts as well as osteoclasts, but odontoclast formation occurs slower and weaker than that of osteoclasts.

Identification of Genes Modulated by High Extracellular Calcium in Coculture of Mouse Osteoblasts and Bone Marrow Cells by Oligo Chip Assay

  • Kim, Hyung-Keun;Song, Mi-Na;Jun, Ji-Hae;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.53-65
    • /
    • 2006
  • Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and $1,25(OH)_2vitaminD_3(VD3)$ by using mouse oligo 11 K gene chip. In the presence of 10 mM $[Ca^{2+}]e$ or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.

Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats

  • de Campos Kajimoto, Natalia;de Paiva Buischi, Yvonne;Loomer, Peter Michael;Bromage, Timothy G.;Ervolino, Edilson;Fucini, Stephen Enrico;Pola, Natalia Marcumini;Pirovani, Beatriz Ommati;Morabito, Maria Juliana Sismeiro;de Almeida, Juliano Milanezi;Furlaneto, Flavia Aparecida Chaves;Nagata, Maria Jose Hitomi
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.374-385
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of locally delivered 1% alendronate (ALN) gel used as an adjunct to non-invasive periodontal therapy. Methods: Ligature-induced periodontitis was performed in 96 rats. The ligature was tied in the cervical area of the mandibular left first molar. The animals were randomly divided into 4 groups: 1) NT, no treatment; 2) SRP, scaling and root planning; 3) SRP/PLA, SRP followed by filling the periodontal pocket with placebo gel (PLA); and 4) SRP/ALN, SRP followed by filling the periodontal pockets with 1% ALN gel. Histomorphometric (percentage of bone in the furcation region [PBF]) and immunohistochemical (receptor activator of nuclear factor-κB ligand, osteoprotegerin, and tartrate-resistant acid phosphatase) analyses were performed. Data were statistically analyzed, with the threshold of statistical significance set at P≤0.05. Results: The SRP, SRP/PLA, and SRP/ALN groups presented a higher PBF than the NT group (P≤0.01) at 7, 15, and 30 days. The SRP/ALN group presented a higher PBF than the SRP/PLA group in all experimental periods, as well as a higher PBF than the SRP group at 15 and 30 days. No differences were observed in the immunohistochemical analyses (P>0.05 for all). Conclusions: Locally delivered 1% ALN gel used as an adjunct to SRP enhanced bone regeneration in the furcation region in a rat model of experimental periodontitis.

Biological Activities of Various Solvent Extracts of Seomaeyakssuk (Artemisia argyi H.) (섬애약쑥 용매별 추출물의 생리활성)

  • Kim, Dong-Gyu;Kang, Jae Ran;Shin, Jung-Hye;Kang, Min-Jung
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1241-1250
    • /
    • 2019
  • Artemisia argyi H. has been used for centuries as a traditional medicine and food supplement in Asian countries. The objective of this study was to investigate the physiological activities of Artemisia argyi H. extracts prepared by butanol, chloroform, ethyl acetate, ethyl ether, hexane, and methanol extraction. We evaluated total phenol and flavonoid content, antioxidant activity, nitric oxide (NO) and reactive oxygen species (ROS) release, and osteoclastogenesis inhibition. The total phenolic and flavonoid contents were highest in the methanol extract (49.46 mg GAE/g and 24.32 mg QE/g, respectively). The methanol extracts also had the highest antioxidant activity (DPPH and ABTS radical scavenging ability and ferric reducing antioxidant power), while the hexane extract had the lowest. The release of NO and ROS was dose-dependently decreased by pre-treatment with all solvent extracts. At the same concentrations, the ethyl acetate and butanol extracts showed higher inhibition of NO and ROS production when compared with the other extracts. The butanol extract, at a concentration of $20{\mu}g/ml$, inhibited about 89% of the activity of the osteoclast marker, tartrate resistant acid phosphatase (TRAP). These results suggest that butanol extracts of Artemisia argyi H. may be effective natural medications for the prevention and treatment of osteoporosis.

Expanded IL-22+ Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia

  • Hong Ki Min;Jeonghyeon Moon;Seon-Yeong Lee;A Ram Lee;Chae Rim Lee;Jennifer Lee;Seung-Ki Kwok;Mi-La Cho;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.43.1-43.14
    • /
    • 2021
  • Group 3 innate lymphoid cells (ILC3), which express IL-22 and IL-17A, has been introduced as one of pathologic cells in axial spondyloarthritis (axSpA). Dyslipidaemia should be managed in axSpA patients to reduce cardiovascular disease, and dyslipidaemia promotes inflammation. This study aimed to reveal the role of circulating ILC3 in axSpA and the impact of dyslipidaemia on axSpA pathogenesis. AxSpA patients with or without dyslipidaemia and healthy control were recruited. Peripheral blood samples were collected, and flow cytometry analysis of circulating ILC3 and CD4+ T cells was performed. The correlation between Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (CRP) and circulating immune cells was evaluated. The effect of oxidized low-density lipoprotein cholesterol (oxLDL-C) on immune cell differentiation was confirmed. AxSpA human monocytes were cultured with with oxLDL-C, IL-22, or oxLDL-C plus IL-22 to evaluate osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR of osteoclast-related gene expression. Total of 34 axSpA patients (13 with dyslipidaemia and 21 without) were included in the analysis. Circulating IL-22+ ILC3 and Th17 were significantly elevated in axSpA patients with dyslipidaemia (p=0.001 and p=0.034, respectively), and circulating IL-22+ ILC3 significantly correlated with ASDAS-CRP (Rho=0.4198 and p=0.0367). Stimulation with oxLDL-C significantly increased IL-22+ ILC3, NKp44- ILC3, and Th17 cells, and these were reversed by CD36 blocking agent. IL-22 and oxLDL-C increased TRAP+ cells and osteoclast-related gene expression. This study suggested potential role of circulating IL-22+ ILC3 as biomarker in axSpA. Furthermore, dyslipidaemia augmented IL-22+ ILC3 differentiation, and oxLDL-C and IL-22 markedly increased osteoclastogenesis of axSpA.

A Study on the changes of periodontal tissue after orthodontic tooth movement in young adult dogs (유성견에서 교정적 치아이동에 따른 치주조직 변화에 관한 연구)

  • Kang, Nam-Yong;Yoon, Young-John;Kim, Kwang-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.559-568
    • /
    • 1997
  • For orthodontic tooth movement, optimal orthodontic force should be maintained without periodontal breakdown and alveolar bone should be remodeled physiologically Therefore, To obtain proper occlusion through tooth movement within alveolar bone, we should know the biomechanics of teeth and supporting 4issues. The present study was performed to observe histologic changes of periodontal tissue immediately after application of orthodontic force and during the retention period in growing young adult dogs. In this study, experimental group contained between mandibular left canine and 1st molar and control group contained contralateral teeth of same animal. The .018'x.022' stainless steel closed coil spring(Dentaurum Co.) was ligated on the experimental teeth at initial 200gm-force from mandibular canine to 1st molar The animals(4 to 6 months aged young adult dogs) were sacrificed on 0, 14, 28 days after the finish of appliance activation, and then tissue samples were divided into hematoxylin-eosin(HE) staining section, ground section, alkaline phosphatase(ALP) staining section, and tartrate-resistant acid phosphatase(TRAP) staining section. Thereafter, the preparations were examined under light microscopy The following results were obtained: 1. Immediately after the finish of appliance activation, the periodontal space was increased in tension side, but decreased in pressure side compared to that of control. The hyalinized zone was also observed in the periodontium. 2. After the 14-day retention, peridontal space was decreased in tension side and slightly increased in pressure side compared to that of immediately after the finish of appliance activation. The hyalinized zone was repaired and a few osteoblasts showing slightly new bone formation were seen. Osteoblasts were scarcely observed along the alveolar bone. 3. Aftter the 28-day retention, the periodontal fibers are normally repaired. A lot of TRAP(+) osteoclasts md increased alveolar bone resorption were observed in pressure side, and AP(+) osteoblast and increased new bone formation were observed in tension side.

  • PDF