Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0111

Ginsenoside Re Inhibits Osteoclast Differentiation in Mouse Bone Marrow-Derived Macrophages and Zebrafish Scale Model  

Park, Chan-Mi (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Hye-Min (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Dong Hyun (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Han, Ho-Jin (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Noh, Haneul (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Jang, Jae-Hyuk (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Soo-Hyun (Clinical Trial Center for Functional Foods(CTCF2), Chonbuk National University Hospital)
Chae, Han-Jung (Clinical Trial Center for Functional Foods(CTCF2), Chonbuk National University Hospital)
Chae, Soo-Wan (Clinical Trial Center for Functional Foods(CTCF2), Chonbuk National University Hospital)
Ryu, Eun Kyoung (Center of Magnetic Resonance Research, Korea Basic Science Institute)
Lee, Sangku (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Liu, Kangdong (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Liu, Haidan (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Ahn, Jong-Seog (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Young Ock (Department of Medicinal Crop Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration)
Kim, Bo-Yeon (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Soung, Nak-Kyun (World Class Institute (WCI), and Chemical biology Research Center, Korean Research Institute of Bioscience and Biotechnology (KRIBB))
Abstract
Ginsenosides, which are the active materials of ginseng, have biological functions that include anti-osteoporotic effects. Aqueous ginseng extract inhibits osteoclast differentiation induced by receptor activator of NF-${\kappa}B$ ligand (RANKL). Aqueous ginseng extract produces chromatography peaks characteristic of ginsenosides. Among these peaks, ginsenoside Re is a major component. However, the preventive effects of ginsenoside Re against osteoclast differentiation are not known. We studied the effect of ginsenoside Re on osteoclast differentiation, RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity, and formation of multinucleated osteoclasts in vitro. Ginsenoside Re hampered osteoclast differentiation in a dose-dependent manner. In an in vivo zebrafish model, aqueous ginseng extract and ginsenoside Re had anti-osteoclastogenesis effects. These findings suggest that both aqueous ginseng extract and ginsenoside Re prevent bone resorption by inhibiting osteoclast differentiation. Ginsenoside Re could be important for promoting bone health.
Keywords
ginsenoside Re; osteoclasts; RANKL; zebrafish;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Putnam, S.E., Scutt, A.M., Bicknell, K., Priestley, C.M., and Williamson, E.M. (2007). Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytotherapy Res. 21, 99-112.   DOI
2 Shin, Y.W., Bae, E.A., Kim, S.S., Lee, Y.C., Lee, B.Y., and Kim, D.H. (2006). The effects of ginsenoside Re and its metabolite, ginsenoside Rh1, on 12-O-tetradecanoylphorbol 13-acetate- and oxazolone-induced mouse dermatitis models. Planta Medica 72, 376-378.   DOI
3 Siddiqi, M.H., Siddiqi, M.Z., Ahn, S., Kang, S., Kim, Y.J., Sathishkumar, N., Yang, D.U., and Yang, D.C. (2013). Ginseng saponins and the treatment of osteoporosis: mini literature review. J. Ginseng Res. 37, 261-268.   DOI
4 Siddiqi, M.H., Siddiqi, M.Z., Kang, S., Noh, H.Y., Ahn, S., Simu, S.Y., Aziz, M.A., Sathishkumar, N., Jimenez Perez, Z.E., and Yang, D.C. (2015). Inhibition of osteoclast differentiation by ginsenoside Rg3 in RAW264.7 cells via RANKL, JNK and p38 MAPK pathways through a modulation of cathepsin K: an in silico and in vitro study. Phytother. Res. [Epub ahead of print].
5 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901.   DOI
6 Biskobing, D.M., Fan, X., and Rubin, J. (1995). Characterization of MCSF-induced proliferation and subsequent osteoclast formation in murine marrow culture. J. Bone Miner. Res. 10, 1025-1032.
7 Boyce, B.F., Xiu, Y., Li, J., Xing, L., and Yao, Z. (2015). NF-kappaB-mediated regulation of osteoclastogenesis. Endocrinol. Metabol. 30, 35-44.   DOI
8 Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342.   DOI
9 Cheng, B., Li, J., Du, J., Lv, X., Weng, L., and Ling, C. (2012). Ginsenoside Rb1 inhibits osteoclastogenesis by modulating NF-kappaB and MAPKs pathways. Food Chem. Toxicol. 50, 1610-1615.   DOI
10 Goltzman, D. (2002). Discoveries, drugs and skeletal disorders. Nat. Rev. 1, 784-796.
11 He, L., Lee, J., Jang, J.H., Lee, S.H., Nan, M.H., Oh, B.C., Lee, S.G., Kim, H.H., Soung, N.K., Ahn, J.S., et al. (2012). Ginsenoside Rh2 inhibits osteoclastogenesis through downregulation of NF-kappaB, NFATc1 and c-Fos. Bone 50, 1207-1213.   DOI
12 Huang, Q., Gao, B., Jie, Q., Wei, B.Y., Fan, J., Zhang, H.Y., Zhang, J.K., Li, X.J., Shi, J., Luo, Z.J., et al. (2014). Ginsenoside-Rb2 displays anti-osteoporosis effects through reducing oxidative damage and bone-resorbing cytokines during osteogenesis. Bone 66, 306-314.   DOI
13 Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315-323.   DOI
14 Tanaka, S., Takahashi, N., Udagawa, N., Tamura, T., Akatsu, T., Stanley, E.R., Kurokawa, T., and Suda, T. (1993). Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J. Clin. Invest. 91, 257-263.   DOI
15 Teitelbaum, S.L., and Ross, F.P. (2003). Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638-649.   DOI
16 van den Heuvel, E.G., Schoterman, M.H., and Muijs, T. (2000). Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J. Nutr. 130, 2938-2942.   DOI
17 Wei, S., Wang, M.W., Teitelbaum, S.L., and Ross, F.P. (2002). Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J. Biol. Chem. 277, 6622-6630.   DOI
18 World Health Organization (2004). WHO scientific group on the assessment of osteoporosis at primary health care level.
19 Kemi, V.E., Karkkainen, M.U., Rita, H.J., Laaksonen, M.M., Outila, T.A. and Lamberg-Allardt, C.J. (2010). Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br. J. Nutr. 103, 561-568.   DOI
20 Kim, H.R., Cui, Y., Hong, S.J., Shin, S.J., Kim, D.S., Kim, N.M., So, S.H., Lee, S.K., Kim, E.C., Chae, S.W., et al. (2008). Effect of ginseng mixture on osteoporosis in ovariectomized rats. Immunopharmacol. Immunotoxicol. 30, 333-345.   DOI
21 Kropotov, A.V., Kolodnyak, O.L., and Koldaev, V.M. (2002). Effects of Siberian ginseng extract and ipriflavone on the development of glucocorticoid-induced osteoporosis. Bull. Exp. Biol. Med. 133, 252-254.   DOI
22 Lee, T.K., O'Brien, K.F., Wang, W., Johnke, R.M., Sheng, C., Benhabib, S.M., Wang, T., and Allison, R.R. (2010). Radioprotective effect of American ginseng on human lymphocytes at 90 minutes postirradiation: a study of 40 cases. J. Altern. Complement. Med. 16, 561-567.   DOI
23 Lee, H.Y, Park, S.H., Chae, S.W., Soung, N.K., Oh, M.j., Kim, J.S., Kim, Y.O., and Chae, H.J. (2015). Aqueous ginseng extract has a preventive role in RANKL-induced osteoclast differentiation and estrogen deficiency-induced osteoporosis. J. Funct. Foods 13, 192-203.   DOI
24 Lim, Y.U., Sun, D.H., and Kim, Y.S. (2009). Etiological cause of osteoporosis and prevention of fracture by osteoporosis. J. Korean Hip Society 21.
25 Polan, M.L., Hochberg, R.B., Trant, A.S., and Wuh, H.C. (2004). Estrogen bioassay of ginseng extract and ArginMax, a nutritional supplement for the enhancement of female sexual function. J. Women's Health 13, 427-430.   DOI