• Title/Summary/Keyword: tartary buckwheat (Fagopyrum tataricum Gaertn.)

Search Result 3, Processing Time 0.017 seconds

Rutin, Catechin Derivatives, and Chemical Components of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) Sprouts

  • Lee, Hee-Sun;Park, Cheol-Ho;Park, Byoung-Jae;Kwon, Soon-Mi;Chang, Kwang-Jin;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.277-282
    • /
    • 2006
  • The aim of this study was to develop the tartary buckwheat (Fagopyrum tataricum Gaertn.) sprouts and to clarify the biological and chemical characteristics of the sprouts. At 7 days after seeding, hypocotyls length and thickness, and root length of tartary buckwheat sprouts were 137 cm, 1.4 mm, and 12.6 cm, respectively. Fresh weight, dry weight, and moisture contents of an individual sprout at 7 days after seeding were 202 mg, 5.4 mg, and 95.3%, respectively. Protein content in tartary buckwheat sprouts was 23.0% which relatively higher than that of seeds, while lipid and ash contents were 3.5% and 5.3%. Among 7 minerals, the content of phosphorus showed the highest level (1,383.5 mg/100 g), while the contents of sodium and potassium were 1,197.5 mg/100 g and 1,106 mg/100 g, respectively. The contents of other minerals were Mg (795.5 mg/100 g), Ca (149 mg/100 g), Zn (16.4 mg/ 100 g), and Fe (14.7 mg/100 g). The rutin content of tatary buckwheat sprouts including root parts was the highest (5644.9 mg/100 g) at 7 days after seeding. The concentration of catechin derivatives in tartary buckwheat sprouts was high in order of catechin (59 mg/100 g), epicatechin gallate (47 mg/100 g), and epicatechin (14 mg/100 g).

A Process for Preventing Enzymatic Degradation of Rutin in Tartary Buckwheat (Fagopyrum tataricum Gaertn) Flour

  • Li, Dan;Li, Xiaolei;Ding, Xiaolin;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.118-122
    • /
    • 2008
  • The use of tartary buckwheat flour as a source of dietary rutin has been limited because of the enzymatic degradation of rutin during the dough-making process, which results in a bitter taste. A variety of pretreatment regimes, including heating, steaming, boiling, and extruding, were evaluated in relation to the inactivation of the rutin-degrading enzyme responsible for rutin loss and color change during dough-making. Steaming (120 see), boiling (90 see) buckwheat grains, or extruding (180 rpm/min at $140^{\circ}C$) the flour resulted in the retention of >85% of the original rutin and eliminated the bitter taste in the hydrated flours. In contrast, dry heating at $140^{\circ}C$ for 9 min or microwaving at 2,450 MHz for 3 min did not reduce the rutin loss, and the bitter taste remained. Unlike in the flour, the rutin degradation in water-soaked grains was insignificant at room temperature. Moreover, the samples treated by steaming, boiling, or extrusion were darker and more reddish in color.

Comparison and validation of rutin and quercetin contents according to the extraction method of tartary Buckwheat (Fagopyrum tataricum Gaertn.) (쓴메밀 종자의 추출방법에 따른 루틴 및 퀘세틴 함량 비교)

  • Kim, Su Jeong;Sohn, Hwang Bae;Kim, Geum Hee;Lee, Yu Young;Hong, Su Young;Kim, Ki Deog;Nam, Jeong Hwan;Chang, Dong Chil;Suh, Jong Taek;Koo, Bon Cheol;Kim, Yul Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.258-264
    • /
    • 2017
  • The stability and accuracy of ultra-performance liquid chromatography (UPLC) used for evaluating the contents of rutin and quercetin in tartary buckwheat (Fagopyrum tataricum Gaertn.) seeds extracted by seven different extraction methods were determined. The seven extraction methods were reflux extraction (RE), ultra-sonification extraction (UE), stirrer extraction (SE), RE after UE (UE+RE), RE after SE (SE+RE), UE after SE (SE+UE), and RE with UE after SE (SE+UE+RE). Among the seven extraction methods used, RE yielded comparatively higher contents of rutin (2,277 mg/ 100 g) and quercetin (158 mg/100 g) than those yielded by other six extraction methods. The intra-day repeatability and inter-day precision of RE was 0.4-3.2% considering relative standard deviation (RSD), while accuracy was 88.8-102.4%. Therefore, RE with UPLC would be a rapid, accurate, and stable method for analyzing rutin and quercetin contents in tartary buckwheat.