• Title/Summary/Keyword: target volume

Search Result 913, Processing Time 0.023 seconds

Analysis on the Decrease of Planning Target Volume in the Case of Lung Radiation Surgery with the Application of Respiratory Gated Radiotherpy Method (폐암 환자의 방사선수술 시 호흡연동 방사선치료 방법의 적용을 통한 계획용표적체적 감소 효과 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mee-Sun;Jung, Jae-Uk
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.263-268
    • /
    • 2008
  • The application of a respiratory gated radiotherpy method to the lung radiation surgery was evaluated compared with the conventional method in which the whole tumor motion range is considered in the delineation of PTV (Planning target volume). The four dimensional CT simulation images were acquired for the five NSCLC (Non-small cell lung cancer) patients for radiation surgery. The respiratory gated plan was prepared with the 50% phase CT images and the conventional method was planned based on the ITV (Internal target volume) which include all the target volumes created in each phase CT images within a whole respiratory period. The DVH (Dose volume histogram) of OAR (Organ at risk) which calculated in each method was compared for the evaluation of the plan properness. The relative decrease of OARs' DVH were verified in the application of respiratory gated method. The average decrease rate were $16.88{\pm}9.97%$ in the bronchus, $34.13{\pm}19.15%$ in the spinal cord, $28.42{\pm}18.49%$ in the chest wall and $32.48{\pm}16.66%$ in the lung. Based on these results, we can verified the applicability and the effectiveness of the respiratory gated method in the lung radiation surgery.

  • PDF

A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

  • Mattes, Malcolm D.;Lee, Jennifer C.;Elnaiem, Sara;Guirguis, Adel;Ikoro, N.C.;Ashamalla, Hani
    • Radiation Oncology Journal
    • /
    • v.32 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Purpose: The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum ($Rectum_{overlap}$) or PTV and bladder ($Bladder_{overlap}$) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Materials and Methods: Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. Results: The percentage $Rectum_{overlap}$ and $Bladder_{overlap}$ correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum $V_{45}$ and bladder $V_{50}$ with $R^2$ = 0.78 and $R^2$ = 0.83, respectively, and predicted the boost plan rectum $V_{30}$ and bladder $V_{30}$ with $R^2$ = 0.53 and $R^2$ = 0.81, respectively. The optimal cutoff value of boost $Rectum_{overlap}$ to predict rectum $V_{75}$ >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost $Bladder_{overlap}$ to predict bladder $V_{80}$ >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). Conclusion: The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

Evaluating Correlation between Geometrical Relationship and Dose Difference Caused by Respiratory Motion Using Statistical Analysis

  • Shin, Dong-Seok;Kang, Seong-Hee;Kim, Dong-Su;Kim, Tae-Ho;Kim, Kyeong-Hyeon;Cho, Min-Seok;Noh, Yu-Yoon;Yoon, Do-Kun;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.203-212
    • /
    • 2016
  • Dose differences between three-dimensional (3D) and four-dimensional (4D) doses could be varied according to the geometrical relationship between a planning target volume (PTV) and an organ at risk (OAR). The purpose of this study is to evaluate the correlation between the overlap volume histogram (OVH), which quantitatively shows the geometrical relationship between the PTV and OAR, and the dose differences. 4D computed tomography (4DCT) images were acquired for 10 liver cancer patients. Internal target volume-based treatment planning was performed. A 3D dose was calculated on a reference phase (end-exhalation). A 4D dose was accumulated using deformation vector fields between the reference and other phase images of 4DCT from deformable image registration, and dose differences between the 3D and 4D doses were calculated. An OVH between the PTV and selected OAR (duodenum) was calculated and quantified on the basis of specific overlap volumes that corresponded to 10%, 20%, 30%, 40%, and 50% of the OAR volume overlapped with the expanded PTV. Statistical analysis was performed to verify the correlation with the OVH and dose difference for the OAR. The minimum mean dose difference was 0.50 Gy from case 3, and the maximum mean dose difference was 4.96 Gy from case 2. The calculated range of the correlation coefficients between the OVH and dose difference was from -0.720 to -0.712, and the R-square range for regression analysis was from 0.506 to 0.518 (p-value <0.05). However, when the 10% overlap volume was applied in the six cases that had OVH value ${\leq}2$, the average percent mean dose differences were $34.80{\pm}12.42%$. Cases with quantified OVH values of 2 or more had mean dose differences of $29.16{\pm}11.36%$. In conclusion, no significant statistical correlation was found between the OVH and dose differences. However, it was confirmed that a higher difference between the 3D and 4D doses could occur in cases that have smaller OVH value.

Dosimetric Evaluation of Static and Dynamic Intensity Modulated Radiation Treatment Planning and Delivery (세기조절방사선치료에서 조사방법이 빔 파라미터 및 선량에 미치는 영향에 대한 연구)

  • Kim Sung-Kyu;Kim Myung-Se;Yun Sang-Mo
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 2006
  • The two commonly used methods in delivering intensity modulated radiation therapy (IMRT) plan are the dynamic (sliding window) and static (stop and shoot) mode. In this study, the two IMRI delivery techniques are compared by measuring point dose and dose distributions. Using treatment planning system, clinical target volume (CTV) was created as a sphere with various diameter (3 cm, 7 cm, 12 cm). Two IMRT plans were peformed to deliver 200 cGy to the CTV in dynamic and static mode. The two plans were delivered on a phantom and central point dose and dose distributions were measured. The central point dose differences between static and dynamic IMRT delivery were 0.2%, 0.2% and 0.4% when the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. The differences In volume receiving 90% of the proscribed dose were 2.7%, 2.2%, and 2.9% for the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. For lung cancer patients, the differences in central point dose were 0.2%, 0.2%, and 0.4% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. The differences in volume receiving 90% of the prescribed dose were 2.7%, 4.8%, and 9.1% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. In conclusion, it was possible to deliver IMRT plans using dynamic mode of MLC operation although the loaves are In motion during radiation delivery.

  • PDF

Feasibility of Shrinking Field Radiation Therapy through 18F-FDG PET/CT after 40 Gy for Stage III Non-Small Cell Lung Cancers

  • Ding, Xiu-Ping;Zhang, Jian;Li, Bao-Sheng;Li, Hong-Sheng;Wang, Zhong-Tang;Yi, Yan;Sun, Hong-Fu;Wang, Dong-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.319-323
    • /
    • 2012
  • Objective: To explore the feasibility of shrinking field technique after 40 Gy radiation through 18F-FDG PET/CT during treatment for patients with stage III non-small cell lung cancer (NSCLC). Methods: In 66 consecutive patients with local-advanced NSCLC, 18F-FDG PET/CT scanning was performed prior to treatment and repeated after 40 Gy. Conventionally fractionated IMRT or CRT plans to a median total dose of 66Gy (range, 60-78Gy) were generated. The target volumes were delineated in composite images of CT and PET. Plan 1 was designed for 40 Gy to the initial planning target volume (PTV) with a subsequent 20-28 Gy-boost to the shrunken PTV. Plan 2 was delivering the same dose to the initial PTV without shrinking field. Accumulated doses of normal tissues were calculated using deformable image registration during the treatment course. Results: The median GTV and PTV reduction were 35% and 30% after 40 Gy treatment. Target volume reduction was correlated with chemotherapy and sex. In plan 2, delivering the same dose to the initial PTV could have only been achieved in 10 (15.2%) patients. Significant differences (p<0.05) were observed regarding doses to the lung, spinal cord, esophagus and heart. Conclusions: Radiotherapy adaptive to tumor shrinkage determined by repeated 18F-FDG PET/CT after 40 Gy during treatment course might be feasible to spare more normal tissues, and has the potential to allow dose escalation and increased local control.

A Study on the Expansion of Low Emission Zone in Green Transport Zone and Seoul Metropolitan Government Using Origin-Destination Traffic Volume (O/D 데이터를 활용한 녹색교통지역 및 서울시 자동차 운행제한 확대 연구)

  • Jeong, Jae Eun;Shon, Eui Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.90-99
    • /
    • 2020
  • The "Low Emission Zone" (LEZ) system restricts entry of vehicles with high air pollutants into city centers. Implementation of the system improves air environment around the world. Since 2012, operating restrictions have been applied to all of Seoul's metropolitan areas and some other metropolitan areas in the state. Beginning in December 2019, entry of 5th class vehicles to the central green transport zone of Seoul has been restricted. In this study we examine the status of operational restrictions in this zone, and predict the amount of traffic reduction expected when numbers of target vehicles are expanded in the future, we use data for each vehicle's emission grade: by region and 'Origin-Destination Traffic Volume'. After estimating the amount of traffic entering Seoul's 25 autonomous districts, by emission class, we propose a target region that may have a significant effect if target areas for automobile operation restrictions expand in the future.

Dosimetric Effects of Air Pocket during Magnetic Resonance-Guided Adaptive Radiation Therapy for Pancreatic Cancer

  • Jin, Hyeongmin;Kim, Dong-Yun;Park, Jong Min;Kang, Hyun-Cheol;Chie, Eui Kyu;An, Hyun Joon
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.104-111
    • /
    • 2019
  • Purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART), an emerging technique, is used to address the change in anatomical structures, such as treatment target region, during the treatment period. However, the electron density map used for dose calculation differs from that for daily treatment, owing to the variation in organ location and, notably, air pockets. In this study, we evaluate the dosimetric effect of electron density override on air pockets during online ART for pancreatic cancer cases. Methods: Five pancreatic cancer patients, who were treated with MRgART at the Seoul National University Hospital, were enrolled in the study. Intensity modulated radiation therapy plans were generated for each patient with 60Co beams on a ViewrayTM system, with a 45 Gy prescription dose for stereotactic body radiation therapy. During the treatment, the electron density map was modified based on the daily MR image. We recalculated the dose distribution on the plan, and the dosimetric parameters were obtained from the dose volume histograms of the planning target volume (PTV) and organs at risk. Results: The average dose difference in the PTV was 0.86Gy, and the observed difference at the maximum dose was up to 2.07 Gy. The variation in air pockets during treatment resulted in an under- or overdose in the PTV. Conclusions: We recommend the re-contouring of the air pockets to deliver an accurate radiation dose to the target in MRgART, even though it is a time-consuming method.

Modified Five Field Technique for Primary and Postop Breast Cancer Irradiation (유방암에서의 근치적 또는 수술후 방사선 치료방법 : 5문 조사법)

  • Choi, Eun-Kyung;Chang, Hye-Sook;Yi, Byong-Yong
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.165-170
    • /
    • 1991
  • In breast cancer, the treatment volume presents a relatively complex three dimensional structure. Effective radiation therapy requires the delivery of adequate dose to a large target volume using complex beam arrangements. The technique proposed here is our department's method using asymmetric jaw with appropriate couch, collimator and gantry rotation. This technique has the following advantages: 1) all treatments are given in a single clinical set up 2) it does not require half beam blocks 3) it produces exact geomatric match 4) it is very convenient and easy to use 5) it has daily reproducibility.

  • PDF

Flow and Structural Response Characteristics of a Box-type Artificial Reef (상자형 어초의 흐름 및 구조응답 특성)

  • Kim, Dongha;Woo, Jinho;Na, Won-Bae;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • We carried out flow and structural response analysis of a box-type artificial reef (AR), which is made of concrete and structural steel. From the flow analysis, the wake region and drag coefficient were evaluated and accordingly, the structural analysis was performed to evaluate the stress and deformation of the target reef by considering the pressure field obtained from the flow analysis. The concept of wake volume was presented to quantitatively estimate the wake region and its variation according to flow direction and velocity. From the results, it is shown that the flow responses are only sensitive to the flow direction; the structural responses are sensitive to both of the flow velocity and direction although the magnitudes are negligible; and the wake volume became 3.52 times the AR volume with an optimum installation condition ($30^{\circ}$, flow direction) of the target unit.

Fractionated Stereotactic Radiotherapy in Pediatric Diffuse Intrinsic Brain Stem Gliomas

  • Choi, Woo-Jin;Yee, Gi-Taek;Han, Seong-Rok;Yoon, Sang-Won;Lee, Dong-Joon;Whang, Choong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.3
    • /
    • pp.154-158
    • /
    • 2006
  • Objective : We treated 10 pediatric diffuse intrinsic brain stem glioma[BSG] patients with Novalis system [linac based radiotherapy unit, Germany] and examined the efficacy of the Fractionated Stereotactic Radiotherapy[FSRT]. Methods : A retrospective review was conducted on 10 pediatric diffuse intrinsic BSG patients who were treated with FSRT between May, 2001 and August, 2004. The mean age of the patient group was 7.7 years old. Male to female ratio was 4 to 1. The mean dose of FSRT was 38.7Gy, mean fractionated dose was 2.6Gy, mean fractionation size was 16.6, and target volume was $42.78cm^3$. The mean follow up period was 14 months. Results : Four weeks after completion of FSRT, improvements on neurological status and Karnofsky performance scale[KPS] score were recorded in 9/10 (90%] patients and magnetic resonance imaging[MRI] showed decrease in target tumor volume in 8 pediatric patients. The median survival period was 13.5 months after FSRT and treatment toxicity was mild. Conclusion : It is difficult for surgeons to choose surgical treatment for diffuse intrinsic BSG due to its dangerous anatomical structures. FSRT made it possible to control the tumor volume to improve neurological symptoms with minimal complications. We expect that FSRT is a feasible treatment modality for pediatric diffuse intrinsic BSG with tolerable toxicities.