International Journal of Fuzzy Logic and Intelligent Systems
/
v.6
no.4
/
pp.277-281
/
2006
Cyber counseling, one of the most compatible type of consultation for the information society, enables people to reveal their mental agonies and private problems anonymously, since it does not require face-to-face interview between a counsellor and a client. However, there are few cyber counseling centers which provide high quality and trustworthy service, although the number of cyber counseling center has highly increased. Therefore, this paper is intended to enable an appropriate consultation for each client by analyzing client propensity using Bayesian variable selection. Bayesian variable selection is superior to stepwise regression analysis method in finding out a regression model. Stepwise regression analysis method, which has been generally used to analyze individual propensity in linear regression model, is not efficient since it is hard to select a proper model for its own defects. In this paper, based on the case database of current cyber counseling centers in the web, we will analyze clients' propensities using Bayesian variable selection to enable individually target counseling and to activate cyber counseling programs.
Journal of Institute of Control, Robotics and Systems
/
v.9
no.10
/
pp.747-754
/
2003
An enhancement of the probabilistic data association filter is presented for tracking a single maneuvering target in clutter environment. The use of the variable dimensional structure leads the probabilistic data association filter to adjust to real motion of a target. The detection of the maneuver for the model switching is performed by the acceleration estimates taken from a bias estimator of the two stage Kalman filter. The proposed algorithm needs low computational power since it is implemented with a single filtering procedure. A simple Monte Carlo simulation was performed to compare the performance of the proposed algorithm and the IMMPDA filter.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.48
no.11
/
pp.881-888
/
2020
In this paper, research on estimation of states of a target of interest using Line Of Sight(LOS) angle measurement is performed. Target's position, velocity, and acceleration are chosen to be the states of interests. The LOS measurement is known to be highly non-linear, making target dynamic modeling hard to be implemented into a filter. To solve this issue, the Pseudomeasurement equation was applied to the LOS measurement equation. With the help of this equation, 3D variable turn target dynamic model is applied to the filter model. For better performance, Kinematic Constraint is also implemented into the filter model. As for the filter, Bias Compensation Pseudomeasurement Filter (BCPMF) is used which is known for its robustness to initial conditions. Moreover, Two-Stage Kalman Filter (TSKF) form was also implemented to benefit from the parallel computation. As a result, TBCPMF 3DVT-KC is proposed and simulated to assess performance.
A method for poll analysis using information theory and data visualization is proposed in this paper. Questions of opinion poll consist of a target variable and many explanation variables. The type of explanation variables is either numerical or categorical. In this study, explanation variables of mixed types have been ranked according to the magnitude of their effect on target variable by using mutual information. Likewise, the order of explanation variables has been evaluated using data visualization. This is the first study to quantify the impact of specific explanation variable on the related target variable.
Purpose - This study investigates whether a listing effect exists in cross-border M&As and whether the effect can be attributed to the uncertainty of the GDP growth rate in the target firm's home country. We apply a joint variable analysis using M&A announcement data from the Korea Exchange (KRX), Shanghai Stock Exchange (SSE), and the Taiwan Stock Exchange (TWSE) from 2004 to 2013. We also conduct an event study using the measure of the uncertainty of the GDP growth rate (based on IMF statistics) in 55 target countries. Design/methodology - We measure the abnormal return (AR) using the market-adjusted model. We test the significance of the AR and the cumulative abnormal return (CAR) using a one-sample t-test. We examine the characteristics of the CARs depending on whether the target company is listed by applying a difference analysis using CAR as a test variable. In addition, we set CAR (-5, +5) as a dependent variable to identify the cause of the listing effect, and test both the financial characteristic variables of the acquirer and the collective characteristic variables of the merger as independent variables in the multiple regression analysis. Findings - First, we find the listing effect of cross-border M&As in the KRX, SSE, and TWSE, which represent the capital markets in Korea, China, and Taiwan, respectively. This listing effect persists during the global financial crisis and has a negative effect on the wealth of acquiring shareholders, especially when the target countries are emerging markets. Second, greater uncertainty regarding the target countries' economic growth in cross-border M&As has a negative effect on the wealth of acquiring firms' shareholders. Third, our empirical analysis demonstrates that the listing effect is attributable to the fact that firms listed in a target country with greater uncertainty of economic growth are more directly and greatly exposed to uncertain capital markets through stock markets, than are unlisted firms. Originality/value - This study is significant in that it presents a new strategic perspective in the study of cross-border M&As by demonstrating empirically that the listing effect is attributable to the uncertainty regarding the economic development of the target firms' home countries.
A classification task requires an exponentially growing amount of computation time and number of observations as the variable dimensionality increases. Thus, reducing the dimensionality of the data is essential when the number of observations is limited. Often, dimensionality reduction or feature selection leads to better classification performance than using the whole number of features. In this paper, we study the possibility of utilizing the Markov blanket discovery algorithm as a new feature selection method. The Markov blanket of a target variable is the minimal variable set for explaining the target variable on the basis of conditional independence of all the variables to be connected in a Bayesian network. We apply several Markov blanket discovery algorithms to some high-dimensional categorical and continuous data sets, and compare their classification performance with other feature selection methods using well-known classifiers.
Design variables for suspension systems cannot always be realized in the actual suspension systems due to tolerances in manufacturing and assembly processes. In order to deal with these tolerances, design variables associated with kinematic configuration and compliance characteristics of suspensions are treated as random variables. The reliability of a design target with respect to a design variable is defined as the probability that the design target is in the acceptable design range for all possible values of the design variable. To compute reliability, the limit state, which is the boundary between the acceptable and unacceptable design, is expressed mathematically by a limit state function with value greater than 0 for acceptable design, and less than 0 for unacceptable design. Through reliability analysis, the acceptable range of design variables that satisfy a reliability target is specified. Furthermore, through sensitivity analysis, a general procedure for optimization of the design target with respect to the design variables has been established.
The objective of this study is to examine the usefulness of climate model simulations (GCM) in Korea water resource management. The methods are based on probabilistic measures of the effectiveness of GCM simulations of an indicator variable for discriminating high versus low regional observations of a target variable. The formulation uses the significance probability of the Kolmogorov-Smirnov test for detecting differences between two variables. AMIP-II(Atmospheric Model Intercomparison Project-II) type GCM simulation done by ECMWF(European Centre for Medium-Range Weather Forecasts) was used for indicator variable and observed mean average precipitation(MAP) values on 7 major river basins were used as target variable. Monte Carlo simulation is used to establish the significance of the estimator values. The results show that GCM simulations done by ECMWF are skillful in discriminating the high from the low of the observed MAP for wet season in all seven basins of Korea, but not enough for dry season.
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.1
/
pp.123-129
/
2016
In the manufacturing industry fields, thousands of quality characteristics are measured in a day because the systems of process have been automated through the development of computer and improvement of techniques. Also, the process has been monitored in database in real time. Particularly, the data in the design step of the process have contributed to the product that customers have required through getting useful information from the data and reflecting them to the design of product. In this study, first, characteristics and variables affecting to them in the data of the design step of the process were analyzed by decision tree to find out the relation between explanatory and target variables. Second, the tolerance of continuous variables influencing on the target variable primarily was shown by the application of algorithm of decision tree, C4.5. Finally, the target variable, loss, was calculated by a loss function of Taguchi and analyzed. In this paper, the general method that the value of continuous explanatory variables has been used intactly not to be transformed to the discrete value and new method that the value of continuous explanatory variables was divided into 3 categories were compared. As a result, first, the tolerance obtained from the new method was more effective in decreasing the target variable, loss, than general method. In addition, the tolerance levels for the continuous explanatory variables to be chosen of the major variables were calculated. In further research, a systematic method using decision tree of data mining needs to be developed in order to categorize continuous variables under various scenarios of loss function.
The conventional delivery quality assurance (DQA) process for RapidArc (Varian Medical Systems, Palo Alto, USA), has the limitation that it measures and analyzes the dose in a phantom material and cannot analyze the dosimetric changes under the motional organ condition. In this study, a DQA method was designed to overcome the limitations of the conventional DQA process for internal target volume (ITV) based RapidArc. The dynamic DQA measurement device was designed with a moving phantom that can simulate variable target motions. The dose distribution in the real volume of the target and organ-at-risk (OAR)s were reconstructed using 3DVH with the ArcCHECK (SunNuclear, Melbourne, USA) measurement data under the dynamic condition. A total of 10 ITV-based RapidArc plans for liver-cancer patients were analyzed with the designed dynamic DQA process. The average pass rate of gamma evaluation was $81.55{\pm}9.48%$ when the DQA dose was measured in the respiratory moving condition of the patient. Appropriate method was applied to correct the effect of moving phantom structures in the dose calculation, and DVH data of the real volume of target and OARs were created with the recalculated dose by the 3DVH program. We confirmed the valid dose coverage of a real target volume in the ITV-based RapidArc. The variable difference of the DVH of the OARs showed that dose variation can occur differently according to the location, shape, size and motion range of the target. The DQA process devised in this study can effectively evaluate the DVH of the real volume of the target and OARs in a respiratory moving condition in addition to the simple verification of the accuracy of the treatment machine. This can be helpful to predict the prognosis of treatment by the accurate dose analysis in the real target and OARs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.