• Title/Summary/Keyword: target thickness

Search Result 541, Processing Time 0.028 seconds

Selection of target for the minimum expected loss in plating processes (도금공정에서 최소기대손실을 위한 목표치의 설정)

  • Park, Chang-soon;Kim, Jung-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1051-1060
    • /
    • 2010
  • In the plating process of the IC chips for the printed circuit board manufacturing, specification limits for the plating thickness are usually given but its target is not specified in most cases. When the target is not specified, the center point of the specification limits is used instead. When the process capability is large, however, the use of the center point for the target is not the best choice in the context of the total cost. In this paper, the total cost is defined in terms of the production cost and the loss function, and then the optimal choice for target is studied in order to minimize the expected loss. As a consequence, the optimal choice of the target reduces the expected loss significantly, while reducing the process capability slightly.

Change of the Cement Mantle Thickness According to the Movement of the Femoral Stem in THRA (인공고관절 치환술에서 대퇴주대 회전에 따른 시멘트막 두께 변화)

  • Park, Yong-Kuk;Kim, Jin-Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.140-148
    • /
    • 2007
  • THRA(Total Hip Replacement Arthroplasty) has been widely used for several decades as a viable treatment of otherwise-unsolved hip problems. In THRA surgery, cement mantle thickness is critical to long-term implant survival of femoral stem fixed with cement. Numerous studies reported thin or incomplete cement mantle causes osteolysis, loosening, and the failure of implant. To analyze the effect of femoral stem rotation on cement thickness, in this study, we select two most popular stems used in THRA. Using CAD models obtained from a 3D scanner, we measure the cement mantle thickness developed by the rotation of a femoral stem in the virtual space created by broaching. The study shows that as the femoral stem deviates from the target coordinates, the minimum thickness of cement decreases. Therefore, we recommend development of a new methodology for accurate insertion of a femoral stem along the broached space. Also, modification of the stem design robust to the unintentional movement of a femoral stem in the broached space, can alleviate the problem.

A Study on the Experimental Relation between Parameters for Determining Dry Film Thickness in the Application of Anti Corrosive Paint using Hydraulic Plural Component (이액형 도장기기를 이용한 방식 도장 시 건도막두께 결정인자들에 대한 실험적 상관관계 연구)

  • Yun, Won-Jun;Choi, Min-Gu;Lee, Sung-Goun;Lee, Yun-Sig;Heo, Byung-Dong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • Anticorrosive paint is the most widely used in shipbuilding and the dry film thickness is very important in terms of productivity and assurance of anticorrosive performance. However, it is difficult to achieve the recommended target film thickness because the dry film thickness depends on labor's skill in practice and is affected by a number of parameters, such as spray pressure, paint flow rate, tip size, spray distance, SVR(Solid Volume Ratio), etc. Present paper derives an empirical equation through the correlation analysis of parameters selected by spray experiments of anti corrosive painting in order to predict the coated status. Comparing the calculated results with practical data, we show that the empirical equation can successfully expect DFT(Dry Film Thickness).

A Study on Correlation of Dry Film Thickness with Multi-Nozzle Spray Pattern of Shop Primer (Shop Primer의 다중 노즐 분사 스프레이 패턴 인자와 도막두께의 상관관계에 관한 연구)

  • Yun, Won-Jun;Choi, Min-Kyu;Ro, Young-Shic
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.743-749
    • /
    • 2010
  • Multi-nozzle spray painting procedure of the inorganic zinc shop primer was established in order to obtain uniform film thickness. The shop primer paint prevents the corrosion of steel block during shipbuilding. When the dry film thickness of shop primer is insufficient, rust will be generated on the steel block. Otherwise, thick coating of shop primer may be a problem of weld defect. So, it is important to obtain the uniform film thickness of shop primer. The uniformity of dry film thickness is affected by spray speed, distance from spray gun to target surface and overlapping span of spray path. In order to uniformly maintain coating thickness of shop primer, the coating procedure was established based on the correlation of shop primer spray variables.

SUBLAYER THICKNESS DEPENDENCE OF THE OPTICALPROPERTIES OF NI/TI AND Fe/Zr MULTILAERS

  • Lee, Y.P.;Kim, K.W.;Lee, G.M.;Rhee, J.Y.;Szymansky, B.;Dubowik, J.;Kucherenko, A.Yu.;Kudryavstev, Y.V.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.70-74
    • /
    • 1997
  • The study of the thickness dependence of the electron energy structure of Fe, Ni, Ti and Zr sublayers in Ni/Ti and Fe/Zr multilayers by using the experimental and computer simulated optical spectroscopy has been performed. A series of Ni/Ti and Fe/Ze multiayered films (MLF) with a bilayer period of 0.5 - 30 nm and constant (Ni/Ti) / different (Fe/Zr) sublayer thickness ratios were prepared by using computer-controlled double-pair target face-to-face sputtering onto a glass substrate at room temperature (RT) Computer simulation of the resulting optical properties of these MLF was carried out by solving of multireflection problem with a matrix method assuming either "sharp" interfaces resulting in rectangular depth profiles of the components or "mixed" (alloy-like) interfaces of variable thickness between pure-metal sublayers. Optical constants of pure bulk metals as well as equiatomic alloy interfaces were employed in these simulations. It was shown that the difference between experimental and simulated optical properties of the investigated MLF increases with decrease in sublayer thickness. This result allows to conclude that the electronic structures of sublayers below 4-5 nm thickness in mlf differ from the corresponding bulk metals.ponding bulk metals.

  • PDF

Mechanical and Chemical Characterization of NbNx Coatings Deposited by ICP Assisted DC Magnetron Sputtering

  • Jun, Shinhee;Kim, Junho;Kim, Sunkwang;You, Yong Zoo;Cha, Byungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.10-14
    • /
    • 2014
  • Niobium nitride coatings have many potential thin film applications due to their chemical inertness, good mechanical properties, temperature stability and superconducting properties. In this study, $NbN_x$ coatings were prepared by inductively coupled plasma (ICP) assisted DC magnetron sputtering method on the surface of AISI 304 austenitic stainless steels. Effects of target power were studied on mechanical and chemical properties of the coatings. The coating structure was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coating hardness was measured by micro-knoop hardness tester. The coating thickness was measured using a 3D profiler and wear characteristics were estimated using a ball-on-disk wear tester. The thickness of the $NbN_x$ coatings increased linearly from 300 nm to 2000 nm as the Nb target power increased, and it showed over $HK_{0.005}$ 4000 hardness above Nb target power of 300 W. Hexagonal ${\delta}^{\prime}$-NbN phase and cubic ${\delta}$-NbN phase were observed in the coating films and the hardness of the NbNx coatings was higher when these two peaks were mixed. The corrosion resistance increased with the increase of the Nb target power.

Properties of ZrO2 Gas Barrier Film using Facing Target Sputtering System with Low Temperature Deposition Process for Flexible Displays (플렉서블 디스플레이용 저온공정을 갖는 대향 타겟식 스퍼터링 장치를 이용한 ZrO2 가스 차단막의 특성)

  • Kim, Ji-Hwan;Cho, Do-Hyun;Sohn, Sun-Young;Kim, Hwa-Min;Kim, Jong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.425-430
    • /
    • 2009
  • $ZrO_2$ film was deposited by facing target sputtering (FTS) system on polyethylene naphthalate (PEN) substrate as a gas barrier layer for flexible organic light emitting devices (FOLEDs), In order to control the heat of the FTS system caused by the ion bombardment in the cathode compared with the conventional sputtering system, the process characteristics of the FTS apparatus are investigated under various sputtering conditions such as the distance between two targets ($d_{TT}$), the distance between the target and the substrate ($d_{TS}$), and the deposition time. The $ZrO_2$ film by the FTS system can reduce the damage on the films because the ion bombardment with high-energy particles like gamma-electrons, Moreover, the $ZrO_2$ film with optimized condition ($d_{TT}$=140 mm) as a function of the distance from center to edge showed a very uniform thickness below 5 % for a deposition time of 3 hours, which can improve the interface property between the anode and the plastics substrate for flexible displays, It is concluded that the $ZrO_2$ film prepared by the FTS system can be applied as a gas barrier layer or an interlayer between the anode and the plastic substrate with good properties of an uniform thickness and a low deposition-temperature.

Design of X-ray Target for a CNT-based High-brightness Microfocus X-ray Tube (탄소나노튜브를 이용한 고휘도 마이크로빔 X-선원 발생부 설계)

  • Ihsan Aamir;Kim Seon Kyu;Heo Seong Hwan;Cho Sung Oh
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2006
  • A target for a high-brightness microfocus x-ray tube, which is based on carbon nanotubes (CNT) as electron source, is designed. The x-ray tube has the following specifications: brightness of $1\times10^{11}phs/s.mm^2. mrad^2$, spot size $\~5{\mu}m$, and average x-ray energy of $20\~40 keV$. In order to meet the specifications, the design parameters of the target, such as configuration, material, thickness of the target as well as the required beam current, were optimized using computer code MCNPX. The design parameters were determined from the calculation of both x-ray spectrum and intensity distribution for a transmission type configuration. For the thin transmission type target to withstand vacuum pressure and localized thermal loading, the structural stability and temperature distribution were also considered. The material of the target was selected as molybdenum(Mo) and the optimized thickness was $7.2{\mu}m$ to be backed by $150{\mu}m$ beryllium (Be). In addition, the calculations revealed that the maximum temperature of the transmission target can be maintained within the limits of stable operation.

A Study on Numerical Perforation Analysis of Axisymmetric Bullet by the Particle Method (입자법을 이용한 축대칭 탄자의 관통거동 수치해석 연구)

  • Kim, Yong-Seok;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.164-171
    • /
    • 2008
  • A modified generalized particle algorithm, MGPA, was suggested to improve the computational efficiency of standard SPH method in numerical analysis of high speed impact behavior. This method uses a numerical failure mechanism than material failure models to describe the target penetration. MGPA algorithm was more effective to describe the impact phenomena and new boundaries produced during the calculation process were well recognized and treated in the target penetration problem of a bullet. When bullet perforation problems were analyzed by this method, MGPA algorithm calculation gives the stable numerical solution and stress oscillation or particle penetration phenomena were not shown. The error range in ballistic velocity limit is less than $2{\sim}13%$ for various target thickness.

Thermal-Hydraulic, Structural Analysis and Design of Liquid Metal Target System (액체금속 표적 시스템의 열적, 구조적 건전성 평가 및 설계)

  • 이용석;정창현
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.294-298
    • /
    • 2001
  • A research for transmutation reactor is in progress to transmute high radioactive isotopes into low radioactive ones. In this study, thermal-hydraulic and structural analysis was performed to design liquid metal target system that would be used in subcritical transmutation reactor. Diffuse plate installation was considered to enhance cooling of window. And thermal-structural analysis of window was performed varying window thickness, beam power, and coolant flow rate to determine target system design valuers. It is ensured that maximum window temperature and stress would be acceptable in the design condition.

  • PDF