• Title/Summary/Keyword: tangential force

Search Result 171, Processing Time 0.027 seconds

Design & development of a device for thin-film evaluation using a two-component loadcell (2축 로드셀을 이용한 박막평가장치의 설계 및 개발)

  • Lee, Jeong-Il;Kim, Jong-Ho;Park, Yon-Kyu;Oh, Hee-Geun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1448-1452
    • /
    • 2003
  • A scratch tester was developed to evaluate the adhesive strength at interface between thin-film and substrate(silicon wafer). Under force control, the scratch tester can measure the normal and the tangential forces simultaneously as the probe tip of the equipment approaches to the interface between thin-film and substrate of wafer. The capacity of each component of force sensor is 0.1 N ${\sim}$ 100 N. In addition, the tester can detect the signal of elastic wave from AE sensor(frequency range of 900 kHz) attached to the probe tip and evaluate the bonding strength of interface. Using the developed scratch tester, the feasibility test was performed to evaluate the adhesive strength of thin-film.

  • PDF

Study to Reduce Process Cycle Time and to Improve Surface Roughness of a Mobile Phone Unibody Case through Cutting Force Optimization (절삭력 최적화를 통한 핸드폰 Unibody Case 가공 싸이클 타임 단축 및 표면 조도 향상에 관한 연구)

  • Lee, Seung-Yong;Choi, Hyun-Jin;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.119-124
    • /
    • 2017
  • Machining optimization using typical computer-aided manufacturing (CAM) software mainly depends on tool paths, and it is impossible to predict the behavior of material or cutting force. In this paper, cutting force analysis simulation is performed on the Unibody Case of a mobile phone with the aim of optimizing cutting-force-based machining using the Third Wave Systems' AdventEdge Production Module. Machining time after optimization was shortened by 42% for roughing compared to pre-optimization, and actual machining time was reduced by 36.8%. For finishing, machining time was reduced by 92%, and actual machining time was reduced around 90%. A surface roughness analysis found that the post-optimization surface roughness was $1.16{\mu}m$ Ra, compared to a pre-optimization value of $1.75{\mu}m$ Ra.

Analysis of the Static Friction Coefficient of Contacting Rough Surfaces in Miniature Systems (거친 면 접촉의 정적 마찰계수 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.19 no.4
    • /
    • pp.230-236
    • /
    • 2003
  • In applications such as MEMS and NEMS devices, the adhesion force and contact load may be of the same order of magnitude and the static friction coefficient can be very large. Such large coefficient may result in unacceptable and possibly catastrophic adhesion, stiction, friction and wear. To obtain the static friction coefficient of contacting real surfaces without the assumption of an empirical coefficient value, numerical simulations of the contact load, tangential force, and adhesion force are preformed. The surfaces in dry contact are statistically modeled by a collection of spherical asperities with Gaussian height distribution. The asperity micro-contact model utilized in calculation (the ZMC model), considers the transition from elastic deformation to fully plastic flow of the contacting asperity. The force approach of the modified DMT model using the Lennard-Jones attractive potential is applied to characterize the intermolecular forces. The effect of the surface topography on the static friction coefficient is investigated for cases rough, intermediate, smooth, and very smooth, respectively. Results of the static friction coefficient versus the external force are presented for a wide range of plasticity index and surface energy, respectively. Compared with those obtained by the GW and CEB models, the ZMC model is more complete in calculating the static friction coefficient of rough surfaces.

The Differences in the Ski Carving Turn Motion According to Level of Exper tise (스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구)

  • Eun, Seon-Deok;Hyun, Moo-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.

Effect of Kinetic Degrees of Freedom of the Fingers on the Task Performance during Force Production and Release: Archery Shooting-like Action

  • Kim, Kitae;Xu, Dayuan;Park, Jaebum
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Objective: The purpose of this study was to examine the effect of changes in degrees of freedom of the fingers (i.e., the number of the fingers involved in tasks) on the task performance during force production and releasing task. Method: Eight right-handed young men (age: $29.63{\pm}3.02yr$, height: $1.73{\pm}0.04m$, weight: $70.25{\pm}9.05kg$) participated in this study. The subjects were required to press the transducers with three combinations of fingers, including the index-middle (IM), index-middle-ring (IMR), and index-middle-ring-little (IMRL). During the trials, they were instructed to maintain a steady-state level of both normal and tangential forces within the first 5 sec. After the first 5 sec, the subjects were instructed to release the fingers on the transducers as quickly as possible at a self-selected manner within the next 5 sec, resulting in zero force at the end. Customized MATLAB codes (MathWorks Inc., Natick, MA, USA) were written for data analysis. The following variables were quantified: 1) finger force sharing pattern, 2) root mean square error (RMSE) of force to the target force in three axes at the aiming phase, 3) the time duration of the release phase (release time), and 4) the accuracy and precision indexes of the virtual firing position. Results: The RMSE was decreased with the number of fingers increased in both normal and tangential forces at the steady-state phase. The precision index was smaller (more precise) in the IMR condition than in the IM condition, while no significant difference in the accuracy index was observed between the conditions. In addition, no significant difference in release time was found between the conditions. Conclusion: The study provides evidence that the increased number of fingers resulted in better error compensation at the aiming phase and performed a more constant shooting (i.e., smaller precision index). However, the increased number of fingers did not affect the release time, which may influence the consistency of terminal performance. Thus, the number of fingers led to positive results for the current task.

A study on Structure Analysis about 47ton Excavator Drive Motor Gear carrier (47ton 굴삭기 주행모터 기어 캐리어의 구조해석에 관한 연구)

  • Jeong, Il-Jung;Lee, Sang-Hoon;Lee, Seok-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.724-729
    • /
    • 2007
  • The study is a structure analysis by applying the output torque and tangential force on 47 ton excavator drive motor gear carrier. The finite element analysis for 3D model is performed by ABAQUS/Standard. We made an estimate by evaluating the results of the finite element analysis.

  • PDF

Mechanics of Diamond Blade Sawing (다이아몬드 블레이드를 사용한 절단가공이 절단저항력 해석)

  • Seo, Young-Il;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.84-90
    • /
    • 1996
  • A theoretical analysis is presented on the mechanics of diamond blade sawing. The normal and tangential components of cutting force are calculated. Experimental results are also presented, which show the effects of cutting variables such as cutting speed, feed speed, cutting area, and concentration of diamond blade on the cutting forces. The experimental results are found to be in good agreement with those predicted by the analytical calculation.

  • PDF

Atomistic Simulation of Silicon Nanotube Structure (실리콘 나노튜브 구조의 원자단위 시뮬레이션)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.3
    • /
    • pp.27-29
    • /
    • 2004
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubes corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics of silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

  • PDF

실리콘 나노튜브 구조의 원자단위 시뮬레이션

  • 이준하;이흥주;이주율
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.63-66
    • /
    • 2004
  • The responses of hypothetical silicon nanotubes under torsion have been investigated using an atomistic simulation based on the Tersoff potential. A torque, proportional to the deformation within Hooke's law, resulted in the ribbon-like flattened shapes and eventually led to a breaking of hypothetical silicon nanotubes. Each shape change of hypothetical silicon nanotubes corresponded to an abrupt energy change and a singularity in the strain energy curve as a function of the external tangential force, torque, or twisted angle. The dynamics of silicon nanotubes under torsion can be modelled in the continuum elasticity theory.

  • PDF

Structural Damping Effects on Stability of a Cantilever Column under Sub-tangentially Follower Force (종동력을 받는 외팔기둥의 동적 안정성에 미치는 구조감쇠 효과)

  • Min, Dong-Ju;Park, Jae-gyun;Kim, Moon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.635-643
    • /
    • 2016
  • A stability theory of a damped cantilever column under sub-tangential follower forces is first summarized based on the stability map. It is then demonstrated that internal and external damping can be exactly transformed to Rayleigh damping so that the damping coefficients can be effectively determined using proportional damping. Particularly a parametric study with variation of damping coefficients is performed in association with flutter loads of Beck's column and it is shown that two damping coefficients can be correctly estimated for real systems under the assumption of Rayleigh damping. Finally a frequency equation of a cantilever beam subjected to both a sub-tangentially follower force and two kinds of damping forces is presented in the closed-form and its stability maps are constructed and compared with FE solutions in the practical range of damping coefficients.