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Structural Damping Effects on Stability 
of a Cantilever Column under Sub-tangentially Follower Force
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ABSTRACT

A stability theory of a damped cantilever column under sub-tangential follower forces is first sum-

marized based on the stability map. It is then demonstrated that internal and external damping can 

be exactly transformed to Rayleigh damping so that the damping coefficients can be effectively de-

termined using proportional damping. Particularly a parametric study with variation of damping co-

efficients is performed in association with flutter loads of Beck's column and it is shown that two 

damping coefficients can be correctly estimated for real systems under the assumption of Rayleigh 

damping. Finally a frequency equation of a cantilever beam subjected to both a sub-tangentially fol-

lower force and two kinds of damping forces is presented in the closed-form and its stability maps 

are constructed and compared with FE solutions in the practical range of damping coefficients.

요   약

안정성 지도(stability map)을 이용하여 부분 종동력(sub-tangentailly follower force)를 받는 외팔

기둥의 동적안정성 이론을 요약한다. Rayleigh 감쇠를 가정하여 내적 및 외적 감쇠효과를 2개의 

감쇠비를 통하여 반영하고, 감쇠비 변화에 따른 플러터하중의 변화와 관련된 매개변수 연구를 

수행한다. 또한, 종동력을 받는 외팔기둥에 대한 진동수 방정식의 엄밀해를 유도하고, 특정 감쇠

비 범위에 대한 안정성 지도를 유한요소 해석결과와 함께 비교/분석한다.  

* 

1. Introduction

Dynamic stability problem of a cantilever col-

umn under to the circulatory force, i.e. purely ro-

tation-dependent force, has been well known and 

interesting topics related to it have been in-

tensively studied by many researchers since it was 

analytically solved by von Beck(1). Related to ini-

tial researches, it is worth referring the mono-

graphs by Ziegler(2), Bolotin(3), and Leipholz(4) who 

treated the static and dynamic stability of the 
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non-conservative system analytically. 

According to the linear stability theory, it is 

well known that external damping tends to make 

flutter loads of the non-conservative system in-

creased but the column under small internal damp-

ing loses its stability at drastically deceased flutter 

load. In this case, Beck's column subjected to fol-

lower forces a little bigger than internally damped 

flutter loads become unstable in form of oscil-

lations with a slow growth of amplitude, which is 

sometimes called a quiet flutter. This destabilizing 

effect of small internal damping on the stability of a 

non-conservative system, Ziegler's paradox, has been 

one of attractive research topics(5~9). Shear and rotary 

inertia effects on stability of Beck's column have 

been investigated by many scholars(10~14). In addition, 

Langthjem and Sugiyama(15) and Elishakoff(16) pub-

lished survey papers regarding dynamic stability of 

columns subjected to follower loads. And Lee et 

al.(17) investigated the stability of Beck's column 

with a tip mass. 

In many texts on structural dynamics, it has been 

addressed that structural damping in FE analysis of 

beam structures can be modeled as a kind of 

Rayleigh damping. Recently some researchers(18~20) 

noticed that external and internal (visco-elastic) damp-

ing of a non-conservative system can be treated as 

Rayleigh damping and explored the destabilizing ef-

fects of internal damping using FE analysis. 

However, to authors' knowledge, properties of the 

damping coefficients with relation to a non-con-

servative system have not been investigated. Besides, 

a closed-form solution of Beck's problem consider-

ing both damping effects and effects of shear de-

formation and rotary inertia has not been proposed 

and its stability behaviors have not been reported 

in the practical range. The important points pre-

sented in this paper are summarized as follows:

(1) Linear stability theory of sub-tangentially 

loaded and damped Beck's columns is first sum-

marized based on so called stability map using an 

analytical approach. 

(2) It is then demonstrated that internal and ex-

ternal damping can be exactly transformed to 

Rayleigh damping so that damping coefficients 

can be effectively determined using proportional 

damping. Particularly a parametric study with var-

iation of damping coefficients is performed in as-

sociation with flutter loads of Beck's column and 

it is shown that two damping coefficients can be 

exactly calculated for real systems under assump-

tion of Rayleigh damping. 

(3) Finally, a frequency equation of Timoshenko 

cantilever beams subjected to a sub-tangentially 

follower force and two kinds of damping forces is 

newly derived in the closed-form and its stability 

maps are constructed and compared with FE sol-

utions in the practical range of damping co-

efficients and shear parameters. 

2. Linear Stability Theory 

of Damped Beck's Column

In this section, a linear stability theory of 

damped Beck's columns is summarized using an 

analytical approach. 

Figure 1 shows a prismatic cantilever column 

subjected to a follower force P at the tip end A 

in which the direction of the force changes 

sub-tangentially according to the deformed column 

axis. The coordinate x is measured along the cen-

troidal axis of the column. The mass per unit 

length, the flexural rigidity, the sectional area, and 

A
A

P

x

y

Av

A

L

Fig. 1 Beck's column under sub-tangentially follower 
force



Dong-Ju Min et al. ; Structural Damping Effects on Stability of a Cantilever Column under Sub-tangentially Follower Force

Trans. Korean Soc. Noise Vib. Eng., 26(6) : 635~643, 2016
┃

637

the compressive force P are constant throughout 

the column length. The extended Hamilton's prin-

ciple for the externally and internally damped 

and shear-rigid Beck's column can be expressed 

by,

 
2

1

0 1 2 0

( ) ( )

l
t

t

Av v EI v v Pv v
dx

v v v v dt

Pv l v l

   
   

 

       
        
  


 

  (1)

where l = the total length of the column; v = the 

lateral displacement of the column;  and  = the 

external and internal damping coefficients, re-

spectively;  = the non-conservativeness parameter 

denoting sub-tangentiality. The first three terms in the 

square bracket are the kinetic energy, the elastic 

strain energy of the system, and the potential energy 

due to the axial force P, respectively and the fourth 

and last terms denote the works done by non-con-

servative damping and the follower end force. Also, 

the symbol  denotes the first variation, t represents 

time and t1 & t2 are the integration limits. 

Now integrating by parts for the whole length 

of the column, the well-known equation of motion 

and boundary conditions are obtained:

 

1 2

2

2

0

(0) (0) 0

( ) ( ) 0

( ) 1 ( ) ( ) 0

Av EI v Pv v v

v v
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
 

      
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  

     

  





(2)

For convenience, the following dimensionless 

variables are introduced:

  2
* * * *

2
, , ,

t EI Av x Pl
v x t P

l l EIl


   

2
* *1 2
1 2 2

,
l

AEI l AEI

  
 

 
(3a~f)

Finally, transforming Eq. (2) to the dimension-

less equations and introducing the solution in the 

form of 
** * * *( , ) ( )tv x t e V x  leads to the following 

equation for a non-conservative system:

 
   

* 2 * *
1 2

*
2

* *
2

0

(0) (0) 0; 1 (1) 0;

1 (1) 1 (1) 0
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V P V

 


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(4a~d)

where

   * * 2 A
i i l

EI

        (4e)

In which  and  are the frequency and the 

dimensionless frequency, respectively.

Now general solution of Eq. (4a) is 

     
   

* * *
1 1

* *
2 2
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(5)

where
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Invoking boundary conditions of Eq. (4b)~(4d) 

leads to the following characteristic equation.
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(6)

where the critical flutter and divergence loads can 

be determined by constructing eigencurves of  

P*- based on Eq. (6). Detinko(21) presented a 

generalized version of Eq. (6) by considering ef-

fects of a tip mass additionally. On the other 

hand, the frequency is zero in the case of static 

divergence system. So the solution of Eq. (4a) is 

     * * * * * *cos sinV x A P x B P x C x D    (7)
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In which the divergence loads can be evaluated 

from the following buckling equation:

  *1 cos 0P    (8)

Generally stability of Beck's column depends on 

the location of  on the complex plane. As the 

follower force P is increased, the system is stable 

if the  stays in the left-hand half-plane (≤ ). 

In the undamped non-conservative system, the 
remains on the pure imaginary axis (  ) at first 

but two frequencies coalesce and the real part 
changes negative around the undamped flutter 

load. The  flutter loads of the damped system 

are calculated when the transits from the negative 

values to the positive with the oscillatory part 
being non-zero. On the other hand, static di-

vergence occurs when the  becomes positive and 

the  is equal to zero. Therefore, the divergence 

loads can be directly calculated from the root of 

Eq. (8).

3. FE Formulation 

of Damped Beck’s Column

In this section, a FE formulation of Beck’s col-

umn is presented based on the energy expression 

of Eq. (1) and Rayleigh damping is discussed with 

relation to the internal and external damping terms 

in the previous section.

Figure 2 shows a FE modeling of Beck's col-

umn using 20 two-node beam elements which are 

interpolated by cubic Hermitian polynomials. The 

resulting equations of motion are expressed as

, ,

      

    
P P 

e e e

E G NC

e E e G g

M U CU K K K U 0

M m K k K k
(9)

2 3 4 2

1 2 3 20

20
1

Fig. 2 FE modeling of Beck's column

where the well-known element mass matrix me, 

elastic and geometric stiffness matrices ke, kg are

2 2
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e

e

g nc

m

k

k k

(10)

The load correction stiffness matrix knc is not 

null only for the element including the tip end as 

shown in Eq. (10). In particular, it should be not-

ed that the damping-related terms of Eq. (1) can 

be expressed using me, ke as

 1 2
0

1 2

l

e

v v v v dx

A EI

   

 


 

 
  

 




 

e e e eu m k u
(11)

which means that the damping matrix in Eq. (9) 

due to external and internal damping terms can be 

expressed in a form of Rayleigh damping as fol-

lows:

1 2

A EI

 


  EC M K (12)

In other words, external and internal damping 

coefficients ,  are directly connected to 

Rayleigh damping coefficients by Eq. (12). Hence 

the damping coefficients can be easily determined 

under assumption of being proportional damping 

as follows:
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Damping ratio (%)


Damped flutter load, 
*

_fl dP

External damping only
* *
1 2, 0  

Internal damping only
* *
1 20, 

External & internal 
damping, 

* *
1 2, 

0.01 20.06 10.94 17.03

0.1 20.06 10.94 17.03

2.0 20.06 10.94 17.03

5.0 20.06 10.95 17.06

8.0 20.07 10.95 17.10

10.0 20.08 10.96 17.15

100.0 21.83 12.6 26.22

Table 2 Damped flutter loads of Beck’s column with increase of the damping ratio

21 2
1 1

21 2
2 2

2

2

A EI

A EI

  

  


 

 
(13)

where 1 24 4
3.516 , 22.06

EI EI

Al Al
 

 
   
       
   

 de-

note the first and second natural frequencies of a 

cantilever beam, respectively, and ,  are ob-

tained by solving the simultaneous Eq. (13). Table 

1 shows not only material and geometric proper-

ties of the Beck's column example used in this 

Table 1 Material and geometric properties of Beck's 
column

Property Unit

Cross sectional area, A 1.2×10-4 m2

Moment of inertia, I 1.0×10-9 m4

Elastic modulus, E 10.0 Gpa

Poisson ratio, v 0.3

Mass density,  1.0×103 kgm-3

Total length of column, L 1.0 m

Damping coefficients 
corresponding to proportional  

 damping of 0.1 %

*
1 1,  5.535 × 10-2

6.064 × 10-3

*
2 2,  8.575 × 10-6

7.828 × 10-5

Damping coefficients 
corresponding to proportional  

 damping of 2 %

*
1 1,  1.107

1.213 × 10-1

*
2 2,  1.715 × 10-4

1.566 × 10-3

study but also the external and internal damping 

coefficients corresponding to proportional damping 

 of 0.1 % and 2 %, respectively. In this case, 

note that the ratio of dimensionless damping 

coefficients, * *
1 2/   is about 77.5.

4. Estimation of Damping Coefficients 

in Beck's Column

In the previous section, it was concluded that 

internal and external damping forces of Eq. (2) are 

closely linked to Rayleigh damping forces in FE 

equation and their coefficients can be determined 

by solving the simultaneous Eq. (13) under the as-

sumption of proportional damping. Also, a di-

mensionless form of Eq. (13) can be rewritten as

 2* * * *
1 22     (14)

In order to examine the effects of internal and 

internal damping coefficients on the damped flut-

ter loads, Table 2 shows how the flutter loads of 

Beck’s column vary with the increase of damping 

ratio for  = 1.0. After two damping coefficients
* *
1 2,   are calculated for the given , the second, 

the third and the fourth columns of Table 2 list 

the flutter loads calculated for * *
1 2,  = 0, * *

1 20,   

and 
* *
1 2,   respectively. Surprisingly, Table 2 dem-

onstrates that flutter loads strongly depend on the 

damping ratio, * *
1 2/   except for its last low. 
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Sub-tangentiality,  0.0 0.1 0.2 0.3 0.321 0.354 0.4

1st divergence load, *
1dP

2.467
(2.467)

2.830
(2.829)

3.325
(3.325)

4.055
(4.055)

4.257
(4.257)

4.623
(4.626)

5.292
(5.292)

2nd divergence load, 
*
2dP

22.21
(22.21)

21.17
(21.17)

19.89
(19.90)

18.23
(18.23)

17.81
(17.81)

17.08
(17.08)

15.86
(15.86)

Undamped flutter load, 
*
1flP - - - -

19.42
(19.55)

17.08
(17.08)

16.40
(16.41)

Undamped flutter load, 
*

2flP     
19.42

(19.55)
24.13

(24.13)
28.78

(28.78)

Damped flutter load 1, 
*

_ 1fl dP - - - - 19.42
(19.55)

17.08
(17.08)

15.86
(15.86)

Damped flutter load 2, 
*

_ 2fl dP - - - - 19.22
(19.45)

17.08
(17.08)

15.86
(15.86)

Sub-tangentiality,  0.439 0.5 0.6 0.7 0.8 0.9 1.0

1st divergence load, 
*
1dP

6.099
(6.099)

9.870
(9.867)

- - - - -

2nd divergence load, *
2dP

14.55
(14.55)

9.870
(9.873) - - - - -

Undamped flutter load, 
*
1flP

16.16
(16.16)

16.05
(16.05)

16.26
(16.29)

16.79
(16.82)

17.59
(17.59)

18.67
(18.69)

20.05
(20.06)

Undamped flutter load, 
*

2flP
33.34

(33.34)
49.35

(49.33)
     

Damped flutter load 1,
*

_ 1fl dP 14.55
(14.55)

9.870
(9.872)

9.379
(9.379)

9.305
(9.305

9.529
(9.529)

10.05
(10.05)

10.94
(10.94)

Damped flutter load 2, 
*

_ 2fl dP 14.55
(14.55)

14.20
(14.20)

14.12
(14.12)

14.40
(14.40)

14.98
(14.98)

15.85
(15.85)

17.03
(17.03)

Table 4 Flutter and divergence loads of shear-rigid (S = 0.0) Beck's column with variation of  

*
1

*
2  

0.0 0.001 0.01 0.1 1.0 10.0 100.0

0.0 20.05 20.05 20.05 20.05 20.11 24.27 37.21

0.0001 10.94 12.88 17.55 19.91 20.11 24.28 37.21

0.001 10.94 11.19 12.88 17.56 19.98 24.38 37.21

0.01 10.97 10.99 11.22 12.93 17.80 25.20 37.21

0.1 13.64 13.64 13.68 14.08 17.33 32.10 37.38

0.2 21.51 21.51 21.56 21.98 25.86 41.31 37.85

Table 3 Damped flutter loads of Beck's column with variation of two damping coefficients

From the second column, it is observed that the 

flutter loads with consideration of external damp-

ing only are practically the same as the undamped 

flutter load, 20.05. Also, the flutter loads of the 

third column are nearly equal to the damped load, 

10.94 under the extreme condition of small in-

ternal damping only. Especially the fourth column 

shows damped flutter loads under both two damp-

ing coefficients, which are around 17.03. This 

means that the damped flutter loads of Beck’s 

column under proportional damping in practical 

range will not be different from 17.03 greatly. 

Table 3 shows variation of the flutter loads as 

two damping coefficients increase independently. 

From Table 3, it is observed that the damped 

flutter load tends to be deceased with the in-
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troduction of internal damping but the external 

damping alleviates the tendency, which has been 

well known. Particularly, it should be noticed that 

flutter loads do not fluctuate significantly when 

the damping ratio * *
1 2/   is kept as 100.0 and 

10.0 similarly to the case of Table 2. 

Based on these observations, the following two 

cases for internal and external damping are chosen 

in this study to examine damping effects on flut-

ter loads effectively: 

- Case 1: Small internal damping only 

           
* * -5
1 20, 7.828 10     

- Case 2: External and internal damping 

           
* 1 * 3
1 21.213 10 , 1.566 10     

in which case 1 has been taken to explore effects 

of small internal damping on flutter instability on-

ly while case 2 corresponding to 2 % proportional 

damping, has been chosen to represent realistic 

damping forces. Also, damped flutter loads calcu-

lated for case 1 and 2 are denoted as 
*

_ 1fl dP  and
*

_ 2fl dP , respectively.

By solving Eq. (6) using Mathematica(22) and 

performing FE analysis using Eq. (9), a stability 

diagram of Beck’s column has been constructed 

under the damping condition of two cases. Figure 

3 and Table 4 show stability diagrams and flut-

ter/divergence loads of sub-tangentially loaded and 

damped Beck’s rods as  varies in the range of

0.0 1.0  . It can be noticed that there exist di-

vergence loads in the range of 0.5   from Eq.

(8) and flutter instability governs in the range of

0.5  .

It is observed in Fig. 3 that the undamped 

Beck’s system may be stable or unstable depend-

ing on the range of  as follows:  

1. The range of 0.0 0.32  : it simply loses 

its stability at the first divergence load. 

2. The range of 0.32 0.3543  : it is first 

stable with increase of the follower force but be-

comes unstable by divergence, flutter, and again 

divergence. 

3. The range of 0.3543 0.5  : it is stable 

initially and then loses its stability by divergence 

but it restores its stability again at the second di-

vergence load (re-stabilization) and unstable finally 

by flutter.

4. The range of 0.5 1.0  : it loses its stabil-

ity at the undamped flutter load.

On the other hand, stability of the damped 

Beck’s system(case 2) depending on  can be ad-

dressed as follows:

 

1. The range of 0.0 0.321  : same as the 

range 1 of the undamped system.

2. The range of 0.321 0.354  : same as the 

range 2. 

3. The range of 0.354 0.439  : it is stable 

initially and then loses its stability by divergence 

but it becomes unstable by quiet flutter at the 

second divergence load and finally by violent 

flutter. It is again governed by divergence at 

much higher follower loads.

4. The range of 0.439 0.5  : overall it is 

the same as the range 3 of the damped system 

Fig. 3 Stability regions of shear-rigid Beck’s column 
with variation of 
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but it shows re-stabilization between the second 

divergence load and the damped flutter load and 

quiet flutter in stability between the damped and 

the undamped flutter load.

5. The range of 0.5 1.0  : It loses its stabil-

ity by quiet flutter at the damped flutter load and 

by violent flutter at the undamped flutter load.

5. Conclusions

A stability theory of Beck's column has been 

shortly summarized based on the stability map. 

Under the assumption of Rayleigh damping, both 

internal and external damping coefficients have 

been effectively determined by exploring the ef-

fects of proportional damping parameters on flutter 

instability in practical ranges. Particularly a fre-

quency equation of cantilever beams subjected to 

both a sub-tangentially follower force and two 

kinds of damping forces has been derived in the 

closed-form and its stability maps of Beck’s col-

umns have been constructed with comparison of 

FE solutions. Resultantly, it is conformed that ex-

ternal damping compensates partly the destabiliz-

ing effect of internal damping and thus alleviates 

it in the pure flutter system. 
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