• 제목/요약/키워드: tandem affinity purification

검색결과 7건 처리시간 0.027초

Identification of Novel Binding Partners for Caspase-6 Using a Proteomic Approach

  • Jung, Ju Yeon;Lee, Su Rim;Kim, Sunhong;Chi, Seung Wook;Bae, Kwang-Hee;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.714-718
    • /
    • 2014
  • Apoptosis is the process of programmed cell death executed by specific proteases, the caspases, which mediate the cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial to understanding cell death and other related biological processes. Although a number of possible roles for caspase-6 have been proposed, the identities and functions of proteins that interact with caspase-6 remain uncertain. In this study, we established a cell line expressing tandem affinity purification (TAP)-tagged caspase- 6 and then used LC-MS/MS proteomic analysis to analyze the caspase-6 interactome. Eight candidate caspase-6-interacting proteins were identified. Of these, five proteins (hnRNP-M, DHX38, ASPP2, MTA2, and UACA) were subsequently examined by co-immunoprecipitation for interactions with caspase-6. Thus, we identified two novel members of the caspase-6 interactome: hnRNP-M and MTA2.

A Novel Approach to Investigating Protein/Protein Interactions and Their Functions by TAP-Tagged Yeast Strains and its Application to Examine Yeast Transcription Machinery

  • Jung, Jun-Ho;Ahn, Yeh-Jin;Kang, Lin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.631-638
    • /
    • 2008
  • Tandem affinity purification (TAP) method combined with LC-MS/MS is the most accurate and reliable way to study the interaction of proteins or proteomics in a genome-wide scale. For the first time, we used a TAP-tag as a mutagenic tool to disrupt protein interactions at the specific site. Although lots of commonly used mutational tools exist to study functions of a gene, such as deletional mutations and site-directed mutagenesis, each method has its own demerit. To test the usefulness of a TAP-tag as a mutagenic tool, we applied a TAP-tag to RNA polymerase II, which is the key enzyme of gene expression and is controlled by hundreds of transcription factors even to transcribe a gene. Our experiment is based on the hypothesis that there will be interrupted interactions between Pol II and transcription factors owing to the TAP-tag attached at the C-terminus of each subunit of Pol II, and the abnormality caused by interrupted protein interactions can be observed by measuring a cell-cycle of each yeast strain. From ten different TAP-tagged strains, Rpb7- and Rpb12-TAP-tagged strains show severe defects in growth rate and morphology. Without a heterodimer of Rpb4/Rpb7, only the ten subunits Pol II can conduct transcription normally, and there is no previously known function of Rpb7. The observed defect of the Rpb7-TAP-tagged strain shows that Rpb7 forms a complex with other proteins or compounds and the interruption of the interaction can interfere with the normal cell cycle and morphology of the cell and nucleus. This is a novel attempt to use a TAP-tag as a proteomic tool to study protein interactions.

WTAP 단백질의 안정성을 통한 CCDC98 단백질의 cyclin B1 발현 조절 (Coiled-Coil Domain-Containing Protein 98 (CCDC98) Regulates Cyclin B1 Expression by Affecting WTAP Protein Stability)

  • 오윤정;이은희;이일규;김경수;김홍태
    • 생명과학회지
    • /
    • 제21권8호
    • /
    • pp.1067-1075
    • /
    • 2011
  • CCDC98 단백질은 BRCA1-A 복합체를 DNA 손상 부위로 이동시킴으로써 DNA손상에 의하여 유도되는 G2/M cell cycle checkpoint에 중요한 역할을 한다고 알려져 있다. 하지만 많은 연구에도 불구하고 CCDC98 단백질의 기능에 대해서 알려진 바가 거의 없다. 본 연구는 CCDC98 단백질의 기능을 밝히고자 tandem affinity purification 방법을 수행하였다. 그 결과 Wilms tumor 1-associating protein (WTAP)을 CCDC98의 결합 단백질로 분리 동정하였다. 이들 단백질의 결합을 in vivo and in vitro binding assays를 통하여 확인하였다. 또한, CCDC98 단백질이 cyclin B1의 발현을 억제함을 확인하였는데, 이는 WTAP 단백질의 발현을 조절함으로써 이루어진다는 것을 확인하였다. 이는 CCDC98 단백질이 새로운 세포주기 조절자라는 것을 증명하는 결과이다.

A Novel Anticoagulant Protein with High Affinity to Blood Coagulation Factor Va from Tegillarca granosa

  • Jung, Won-Kyo;Jo, Hee-Yeon;Qian, Zhong-Ji;Jeong, Young-Ju;Park, Sae-Gwang;Choi, Il-Whan;Kim, Se-Kwon
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.832-838
    • /
    • 2007
  • A novel inhibitory protein against blood coagulation factor Va (FVa) was purified from muscle protein of granulated ark (Tegillarca granosa, order Arcoida, marine bivalvia) by consecutive FPLC method using anion exchange and gel permeation chromatography. In the results of ESI-QTOF tandem mass analysis and database research, it was revealed that the purified T. granosa anticoagulant protein (TGAP) has 7.7 kDa of molecular mass and its partial sequence, HTHLQRAPHPNALGYHGK, has a high identity (64%) with serine/threonine kinase derived from Rhodopirellula baltica (order Planctomycetales, marine bacteria). TGAP could potently prolong thrombin time (TT), corresponding to inhibition of thrombin (FIIa) formation. Specific factor inhibitory assay showed that TGAP inhibits FVa among the major components of prothrombinase complex. In vitro assay for direct-binding affinity using surface plasmon resonance (SPR) spectrometer indicated that TGAP could be directly bound with FVa. In addition, the binding affinity of FVa to FII was decreased by addition of TGAP in dose-dependant manner ($IC_{50}$ value = 77.9 nM). These results illustrated that TGAP might interact with a heavy chain of FVa ($FVa_H$) bound to FII in prothrombin complex. The present study elucidated that non-cytotoxic T. granosa anticoagulant protein (TGAP) bound to FVa can prolong blood coagulation time by inhibiting conversion of FII to FIIa in blood coagulation cascade. In addition, TGAP did not significantly (P < 0.05) show fibrinolytic activity and cytotoxicity on venous endothelial cell line (ECV 304).

Assessment of the Reliability of Protein-Protein Interactions Using Protein Localization and Gene Expression Data

  • Lee, Hyun-Ju;Deng, Minghua;Sun, Fengzhu;Chen, Ting
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.313-318
    • /
    • 2005
  • Estimating the reliability of protein-protein interaction data sets obtained by high-throughput technologies such as yeast two-hybrid assays and mass spectrometry is of great importance. We develop a maximum likelihood estimation method that uses both protein localization and gene expression data to estimate the reliability of protein interaction data sets. By integrating protein localization data and gene expression data, we can obtain more accurate estimates of the reliability of various interaction data sets. We apply the method to protein physical interaction data sets and protein complex data sets. The reliability of the yeast two-hybrid interactions by Ito et al. (2001) is 27%, and that by Uetz et at.(2000) is 68%. The reliability of the protein complex data sets using tandem affinity purification-mass spec-trometry (TAP) by Gavin et at. (2002) is 45%, and that using high-throughput mass spectrometric protein complex identification (HMS-PCI) by Ho et al. (2002) is 20%. The method is general and can be applied to analyze any protein interaction data sets.

  • PDF

Comprehensive proteome analysis using quantitative proteomic technologies

  • Kamal, Abu Hena Mostafa;Choi, Jong-Soon;Cho, Yong-Gu;Kim, Hong-Sig;Song, Beom-Heon;Lee, Chul-Won;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.196-204
    • /
    • 2010
  • With the completion of genome sequencing of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. The recent techniques of proteomics have been advanced quickly so that the high-throughput and systematic analyses of cellular proteins are enabled in combination with bioinformatics tools. Furthermore, the development of proteomic techniques helps to elucidate the functions of proteins under stress or diseased condition, resulting in the discovery of biomarkers responsible for the biological stimuli. Ultimate goal of proteomics orients toward the entire proteome of life, subcellular localization, biochemical activities, and their regulation. Comprehensive analysis strategies of proteomics can be classified as three categories: (i) protein separation by 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification by either Edman sequencing or mass spectrometry (MS), and (iii) quanitation of proteome. Currently MS-based proteomics turns shiftly from qualitative proteome analysis by 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, to quantitative proteome analysis. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. The in vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes, protein-labeling tagging with isotope-coded affinity tag, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope labeled amino acid can be in vivo labeled into live culture cells through metabolic incorporation. MS-based proteomics extends to detect the phosphopeptide mapping of biologically crucial protein known as one of post-translational modification. These complementary proteomic techniques contribute to not only the understanding of basic biological function but also the application to the applied sciences for industry.

Identification of interacting proteins of retinoid-related orphan nuclear receptor gamma in HepG2 cells

  • Huang, Ze-Min;Wu, Jun;Jia, Zheng-Cai;Tian, Yi;Tang, Jun;Tang, Yan;Wang, Ying;Wu, Yu-Zhang;Ni, Bing
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.331-336
    • /
    • 2012
  • The retinoid-related orphan nuclear receptor gamma ($ROR{\gamma}$) plays critical roles in regulation of development, immunity and metabolism. As transcription factor usually forms a protein complex to function, thus capturing and dissecting of the $ROR{\gamma}$ protein complex will be helpful for exploring the mechanisms underlying those functions. After construction of the recombinant tandem affinity purification (TAP) plasmid, pMSCVpuro $ROR{\gamma}$-CTAP(SG), the nuclear localization of $ROR{\gamma}$-CTAP(SG) fusion protein was verified. Following isolation of $ROR{\gamma}$ protein complex by TAP strategy, seven candidate interacting proteins were identified. Finally, the heat shock protein 90 (HSP90) and receptor-interacting protein 140 (RIP140) were confirmed to interplay with $ROR{\gamma}$ by co-immunoprecipitation. Interference of HSP90 or/and RIP140 genes resulted in dramatically decreased expression of CYP2C8 gene, the $ROR{\gamma}$ target gene. Data from this study demonstrate that HSP90 and RIP140 proteins interact with $ROR{\gamma}$ protein in a complex format and function as co-activators in the $ROR{\gamma}$-mediated regulatory processes of HepG2 cells.