• 제목/요약/키워드: tan ${\delta}$

검색결과 521건 처리시간 0.024초

Characterization of Microcapsules for Self-Healing in Polymeric Composites

  • Lee Jong Keun;Hong Soon Ji;Liu Xing;Park Hee Won;Yoon Sung Ho
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.190-193
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbomene (ENB)] as self­healing agent for polymeric composites were microencapsuled by in-situ polymerization of urea and formaldehyde. The healing agents were investigated by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Exothermic reaction and glass transition temperature from DSC and storage modulus (G') and tan $\delta$ from DMA curves were analyzed for the samples cured for 5 min and 24 h in the presence of different amounts of catalyst. Micorcapsules were successfully formed for both diene monomers. Microcapsules containing the healing agent were manufactured and its thermal properties were characterized by thermo gravimetric analysis (TGA). Optical microscope (OM) and particle size analyzer (PSA) were employed to observe morphology and size distribution of microcapsules, respectively. Comparison of the two self-healing agents and their microcapsules with the two was made in this study.

  • PDF

Effect of nanofillers on the dielectric properties of epoxy nanocomposites

  • Wang, Q.;Chen, G.
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.93-107
    • /
    • 2012
  • Epoxy resin is widely used in high voltage apparatus as insulation. Fillers are often added to epoxy resin to enhance its mechanical, thermal and chemical properties. The addition of fillers can deteriorate electrical performance. With the new development in nanotechnology, it has been widely anticipated that the combination of nanoparticles with traditional resin systems may create nanocomposite materials with enhanced electrical, thermal and mechanical properties. In the present paper we have carried out a comparative study on dielectric properties, space charge and dielectric breakdown behavior of epoxy resin/nanocomposites with nano-fillers of $SiO_2$ and $Al_2O_3$. The epoxy resin (LY556), commonly used in power apparatus was used to investigate the dielectric behavior of epoxy resin/nanocomposites with different filler concentrations. The epoxy resin/nanocomposite thin film samples were prepared and tests were carried out to measure their dielectric permittivity and tan delta value in a frequency range of 1 Hz - 1 MHz. The space charge behaviors were also observed by using the pulse electroacoustic (PEA) technique. In addition, traditional epoxy resin/microcomposites were also prepared and tested and the test results were compared with those obtained from epoxy resin/nanocomposites.

BaCO3첨가량에 따른 PAN-PZI계 세라믹스의 압전 및 유전특성 (Piezoelectric and Dielectric Characteristics of PAN-PZT Ceramics with BaCO3Addition)

  • 박타리;이동균;최지원;강종윤;김현재;윤석진;고태국
    • 한국전기전자재료학회논문지
    • /
    • 제15권4호
    • /
    • pp.356-360
    • /
    • 2002
  • The piezoelectric properties of $0.05Pb(Al_{0.5}Nb_{0.5})O_3-0.95Pb(Zr_{0.52}Ti_{0.48})O_3+0.7wt%Nb_2O_5+o.5wt%MnO_2$ ceramics with the additive of BaCO$_3$were investigated. As the addition of BaCO$_3$increased from 0 to 0.4 wt%, the dielectric constant ($\epsilon^T _{33}$), piezoelectric constant ($d_33$), electromechanical coupling factor ($k_p$), and mechanical quality factor ($Q_m$) increased, while the dielectric loss ($tan\delta$) decreased. The highest piezoelectric and dielectric properties were observed at $1200^{\circ}C$ of the sintered temperature with 0.4 wt% of $BaCO_3$, and the properties of $d_33$, $k_p$, and $Q_m$ were 339 pC/N, 60% and 1754, respectively.

비선형 특성을 갖는 (Sr·Ca)TiO3계 세라믹의 미세구조 및 유전 특성 (Microstructure and Dielectric Properties of (Sr·Ca)TiO3-based Ceramics Exhibiting Nonlinear Characteristics)

  • 최운식;강재훈;박철하;김진사;조춘남;송민종
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 2002
  • In this paper, the microstructure and the dielectric properties of Sr$\_$1-x/CaxTiO$_3$(0$\leq$x$\leq$0.2)-based grain boundary layer ceramics were investigated. The sintering temperature and time were 1420∼152 0$\^{C}$ and 4 hours in N$_2$ gas, respectively. The average grain size and the lattice constant were decreased with increasing content of Ca, but the average grain size was increased with increase of sintering temperature. The second phase foamed by the thermal diffusion of CuO from the surface leads to verb high apparent dielectric constant, $\xi$$\_$r/>50000 and low dielectric loss, tan$\delta$<0.05. X-ray diffraction patterns of Sr$\_$1-x/CaxTiO$_3$ exhibited cubic structure, and the peaks shifted upward and the peak intensity were decreased with x. This is due to the lattice contraction as Sr is replaced by Ca with a smaller ionic radius. The specimens treated thermal diffusion for 2hrs in 1150$\^{C}$ exhibited nonlinear current-voltage characteristic, and its nonlinear coefficient(a) was overt 7.

Piezo-controlled Dielectric Phase Shifter

  • Jeong Moon-Gi;Kim Beom-Jin;Kazmirenko Victor;Poplavko Yuriy;Prokopenko Yuriy;Baik Sung-Gi
    • Journal of electromagnetic engineering and science
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2006
  • A sandwich structure of dielectric material and air gap inside a rectangular waveguide is proposed as a fast electrically tunable low-loss phase shifter. As the dielectric material is shifted up and down by piezoelectric actuator and, thereby, the thickness of air gap is changed, the effective dielectric constant of the sandwich structure is varied. Phase shifters based on the sandwich structure with different dielectric materials showed phase shift of $20{\sim}200^{\circ}/cm$ at X-band as the thickness of air gap varied up to $30{\mu}m$. The idea can be extended toward low-loss millimeter wave phase shifters since modem microwave ceramics have been developed to show very low dielectric loss$(tan\;{\delta}{\sim}10^{-4})$.

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

자기 캐패시터용 (Ba Sr Mg)$TiO_3$ 세라믹스의 제조 및 유전특성 (The Preparation and Dielectric Properties of (Ba Sr Mg)$TiO_3$Ceramic Capacitors)

  • 김범진;박태곤
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권7호
    • /
    • pp.674-681
    • /
    • 1997
  • Ternary compound ceramics, (1-y-x) BaTiO$_3$-y SrTiO$_3$-x MgTiO$_3$(0.00 x 0.20), were fabricated by the conventional ceramic process. The structural and dielectric properties of specimens were investigated while varying the composition and sintering temperature(1,200~1,45$0^{\circ}C$) in order to obtain the optimum condition of capacitor. As is well known, Curie temperature(T$_{c}$) of high dielectric-based ceramic(BaTiO$_3$) was shifted and temperature of capacitance was decreased in according to increase of solid solution with (Sr, Mg)TiO$_3$. As a result, a suitable condition of compound rate for capacitor was obtained such as the BSM-11(0.8BaTiO$_3$-0.1SrTiO$_3$-0.1MgTiO$_3$), and sintering temperature was sintered at 1,25$0^{\circ}C$ for two hours. In this case, dielectric constant<1,300, dielectric loss(tan$\delta$)<0.03, and the variation rate of capacitance had less than 3% in the range -10~7$0^{\circ}C$.>.

  • PDF

저손실 Mn-Zn-Fe 페라이트의 제조에 관한 연구 (Study on the preparation of low loss Mn-Zn-Fe ferrite)

  • 문현욱;서강수;최희태;신용진
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제3권3호
    • /
    • pp.205-214
    • /
    • 1990
  • 본 논문은 저손실 Mn-Zn-Fe 페라이트 제조에 관하여 연구한 것이다. Mn-Zn-Fe 페라이트는 16mol% Xno, 31mol% MnO 및 53mol% Fe$_{2}$O$_{3}$로 조성하였으며 0.1wt% $Na_{2}$SiO$_{3}$ 0.05wt% $Na_{2}$SiO$_{3}$ 0.1%wt% CaO 0.05% SiO$_{2}$ 및 0.05wt% SiO$_{2}$ 및 0.05wt% $Na_{2}$SiO$_{3}$ 0.1% CaO 0.05wt% $Al_{2}$O$_{3}$를 미량 첨가하였다. 그리고 하소와 분쇄과정을 거친 분말은 충진성을 높이기 위하여 과립화하였다. 소결 1250, 1300 및 1350.deg.C에서 이루어졌고, 평형 산소분압은 소오킹 시 PO$_{2}$는 6%부터 시작하여 점차 감소시켰으며 900.deg.C에서 순수한 질소 분위기로 냉각시켰다. 초투자율, 손실계수 및 고유저항 등의 자기적인 특성은 1300.deg.C에서 소결했을 경우의 것이 가장 우수하였다. 즉, 초투자율은 2*$10^{3}$~$10^{3}$의 높은 값을 얻을 수 있었으며 tan.delta./.mu.i값은 100KHz~ 400KHz의 고파수대에서 9*10$_{-6}$~21*10$_{-6}$이었으며 고유저항 값은 485~680 .OMEGA.-cm의 높은 값을 나타내어 중간주파수대의 자심재료에 적합한 페라이트임을 확인하였다.

  • PDF

Electrical Properties and Temperature Effects of PET Films with Interface Layers

  • Dong-Shick kim;Lee, Kwan-Woo;Park, Dae-Hee;Lee, Jong-Bok;Seun Hwangbo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권4호
    • /
    • pp.25-29
    • /
    • 2000
  • In this paper, PET(Ployethylene Terephthalate) films with semiconducting and interface layers were investigated, The electrical properties, such as volume resistivity, tan$\delta$(dissipation factor) and breakdown strength at various temperatures were measured. Thermal analysis of PET and semiconducting films were measured and compared by differential scanning calorimeter(DSC) of each film. It is found that the volume resistivity of films(dependence on semiconducting interface layers)and electrical properties of PET films are changed ,Breakdown strength and dissipation factor of PET films with semiconducting layer (PET/S/PET) are decreased more greatly than PET and PET/PET films, due to the increase of charge density of charges at two contacted interfaces between PET and semiconductor, The dissipation factor of each films in increased with temperature,. For PET/S/PET film, is depended on temperature more than PET of PET/PET. However, the breakdown strength is increased up to 85$\^{C}$ and then decreased over 100$\^{C}$The electrical properties of PET films with semiconducting/interface layer are worse than without it It is due to a result of temperature dependency, which deeply affects thermal resistance property of PET film more than semiconducting/interface layers.

  • PDF