• Title/Summary/Keyword: tall building response

Search Result 186, Processing Time 0.029 seconds

A Study on the Improved Seismic Analysis of Multistory Shear Wall Buildings (전단벽식 고층건물의 내진해석에 관한 연구)

  • 이준교;이근홍;이수곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.267-272
    • /
    • 1993
  • Currently about 60 contries in the world require earthquake resistant structural design in case of multistory building constructions. In these cases the equivalent lateral force procedure is commonly adopted because of its simplicity and convenience. This procedure, however, is developed based mainly on the first vibration mode response of building structure. The dynamic analysis of tall building shows that the effect of higher modes of vibration on the response of the building can not be neglected. In this paper, the effect of higher modes of vibration on seismic response is evaluated through modal analysis of tall building structures. On the basis of evaluation results, an improved procedure is to be proposed for the extended application of the equivalent lateral force procedure.

  • PDF

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

Wind-induced lateral-torsional coupled responses of tall buildings

  • Wu, J.R.;Li, Q.S.;Tuan, Alex Y.
    • Wind and Structures
    • /
    • v.11 no.2
    • /
    • pp.153-178
    • /
    • 2008
  • Based on the empirical formulas for power spectra of generalized modal forces and local fluctuating wind forces in across-wind and torsional directions, the wind-induced lateral-torsional coupled response analysis of a representative rectangular tall building was conducted by setting various parameters such as eccentricities in centers of mass and/or rigidity and considering different torsional to lateral stiffness ratios. The eccentricity effects on the lateral-torsional coupled responses of the tall building were studied comprehensively by structural dynamic analysis. Extensive computational results indicated that the torsional responses at the geometric center of the building may be significantly affected by the eccentricities in the centers of mass and/or rigidity. Covariance responses were found to be in the same order of magnitude as the along-wind or across-wind responses in many eccentricity cases, suggesting that the lateral-torsional coupled effects on the overall wind-induced responses can not be neglected for such situations. The calculated results also demonstrated that the torsional motion contributed significantly to the total responses of rectangular tall buildings with mass and/or rigidity eccentricities. It was shown through this study that the framework presented in this paper provides a useful tool to evaluate the wind-induced lateral-torsional coupled responses of rectangular buildings, which will enable structural engineers in the preliminary design stages to assess the serviceability of tall buildings, potential structural vibration problems and the need for a detailed wind tunnel test.

Performance of Tall Buildings in Urban Zones: Lessons Learned from a Decade of Full-Scale Monitoring

  • Kijewski-Correa, T.;Kareem, A.;Guo, Y.L.;Bashor, R.;Weigand, T.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.179-192
    • /
    • 2013
  • The lack of systematic validation for the design process supporting tall buildings motivated the authors' research groups and their collaborators to found the Chicago Full-Scale Monitoring Program over a decade ago. This project has allowed the sustained in-situ observation of a collection of tall buildings now spanning worldwide. This paper overviews this program and the lessons learned in the process, ranging from appropriate technologies for response measurements to the factors influencing accurate prediction of dynamic properties all the way to how these properties then influence the prediction of response using wind tunnel testing and whether this response does indeed correlate with in-situ observations. Through this paper, these wide ranging subjects are addressed in a manner that demonstrates the importance of continued promotion and expansion of full-scale monitoring efforts and the ways in which these programs can provide true value-added to building owners and managers.

Effect of Vertically Travelling Fires on the Collapse of Tall Buildings

  • Kotsovinos, Panagiotis;Jiang, Yaqiang;Usmani, Asif
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.49-62
    • /
    • 2013
  • Many previous tall building fires demonstrate that despite code compliant construction fires often spread vertically and burn over multiple floors at the same time. The collapses of the WTC complex buildings in 9/11 as well as other partial collapses like the ones of the Windsor Tower in Madrid and of the Technical University of Delft building posed new questions on the stability of tall buildings in fire. These accidents have shown that local or global collapse is possible in multi-floor fires. In most of the previous work involving multi-floor fires all floors were assumed to be heated simultaneously although in reality fires travel from one floor to another. This paper extends previous research by focusing on the collapse mechanisms of tall buildings in fire and performs a parametric study using various travelling rates. The results of the study demonstrate that vertically travelling fires have beneficial impact in terms of the global structural response of tall buildings in comparison to simultaneous fires. Contrary to the beneficial effect of the travelling fires in terms of the global structural response, it was noticed that higher tensile forces were also present in the floors compared to simultaneous multi-floor case. Designers are therefore advised to consider simultaneous multi-floor fire as an upper bound scenario. However, a scenario where a travelling fire is used is also suggested to be examined, as the tensile capacity of connections may be underestimated.

Wind-induced response of structurally coupled twin tall buildings

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.383-398
    • /
    • 2007
  • The paper describes a study of the effects of structural coupling on the wind-induced response of twin tall buildings connected by a skybridge. Development of a dual high-frequency force balance used in wind tunnel investigation and background information on the methodology employed in analysis are presented. Comparisons of the wind-induced building response (rooftop acceleration) of structurally coupled and uncoupled twin buildings are provided and the influence of structural coupling is assessed. It is found that the adverse aerodynamic interference effects caused by close proximity of the buildings can be significantly reduced by the coupling. Neglecting of such interactions may lead to excessively conservative estimates of the wind-induced response of the buildings. The presented findings suggest that structural coupling should be included in wind-resistant design of twin tall buildings.

Mean Square Response Analysis of the Tall Building to Hazard Fluctuating Wind Loads (재난변동풍하중을 받는 고층건물의 평균자승응해석)

  • Oh, Jong Seop;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. By deterministic function A(t)=1-exp($-{\beta}t$), the absolute value square of oscillatory function is represented from author's studies. The time-dependent random response spectral density is represented by using the absolute value square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy's Integral Formula and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analysis fun. results by dynamic properties of the tall uilding.

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

Concept Design of a Parallel-type Tuned Mass Damper - Tuned Sloshing Damper System for Building Motion Control in Wind

  • Lee, Chien-Shen;Love, J. Shayne;Haskett, Trevor C.;Robinson, Jamieson K.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.93-97
    • /
    • 2021
  • Supplementary damping systems, such as tuned mass dampers (TMDs) and tuned sloshing dampers (TSDs) - also known as tuned liquid dampers (TLDs) - have been successfully employed to reduce building motion during wind events. A design of a damping system consisting of a TMD and two TSDs performing in unison has been developed for a tall building in Taiwan to reduce wind-induced motion. The architecturally exposed TMD will also be featured as a tourist attraction. The dual-purpose TSD tanks will perform as fire suppression water storage tanks. Linearized equivalent mechanical TSD and TMD models are coupled to the structure to simulate the multi-degree of freedom system response. Frequency response curves for the structure with and without the damping system are created to evaluate the performance of the damping system. The performance of the combined TMD-TSD system is evaluated against a conventional TMD system by computing the effective damping produced by each system. The proposed system is found to have superior performance in acceleration reduction. The combined TMD-TSD system is an effective and affordable means to reduce the wind-induced resonant response of tall buildings.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.