• Title/Summary/Keyword: tailing analysis

Search Result 74, Processing Time 0.03 seconds

Establishment of Tailing Disposal Scenario in Open-Pit and Surface Pillar Stability Analysis (노천채굴적 내 광미 적치 시나리오 구축 및 천반 수평필러 안정성 분석)

  • Il-Seok Kang;Jae-Joon Song;Thomas Pabst
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.54-70
    • /
    • 2024
  • Utilization of completed open-pit for mining waste disposal is an alternative method of tailing storage facility (TSF), which can minimize the area and cost required for the installation of TSF. However, long-term tailing disposal into open-pit has a potential risk of reducing mechanical stability of surrounding rock mass by acting as an additional load. In this research, a realistic open-pit tailing disposal scenario of 60,400 hours was established based on the case of Marymia gold mine, Australia. Mechanical stability of surface pillar between open-pit and underground stope was analyzed numerically by using Sigma/W, under different stope geometry and rock mass conditions. Simulation results showed that long-term tailing disposal into open-pit can significantly increase the failure probability of surface piller. This result suggests that mechanical stability of mine geometry should be conducted beforehand of open-pit tailing disposal.

Applicability Evaluation of Tailing Admixture as Grout Material (그라우트 재료로서 광물찌꺼기 혼화재의 활용 가능성 평가)

  • Kim, Daehyeon;Noh, Jeongdu;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • The purpose of this study is to evaluate the applicability of tailing in the ${\bigcirc}{\bigcirc}$ mine as a grout material. For the purpose, XRD analysis was performed for mineralogical properties of tailing. In addition, flow, velocity, and uniaxial compressive strength tests were carried out for physical and mechanical properties of a grout material with the mixing ratio of cement and tailing and curing periods. By the result of XRD analysis, tailing of the mine was found to mostly consist of quartz, galena, and pyrite. The flow observed by the flow test showed decreasing tendency with increasing the mixing ratio of tailing. The velocity was also lowered with increasing the mixing ratio of tailing regardless of curing periods. The uniaxial compressive strength as well as Young's modulus also show a tendency to decrease with increasing the mixing ratio of tailing independently on the curing periods. Considering only the physical and mechanical properties of a grout material with tailing, the results are considered to be sufficiently used as a grout material. However, since metallic minerals such as galena and pyrite in tailing contents and these are causing environmental contamination, countermeasures should be considered for this problem in future.

Geochemical evolution of mine tailing porewaters and groundwater pollution - Case for Shiheung mine (광미 자연풍화에 따른 광미공극수의 지구화학적 진화와 지하수 오염영향 - 시흥광산의 사례)

  • 정예진;이상훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • The Shiheung mine was closed in 1972 and has been abandoned since then. Although some restoration work has been done, there still remain mine failings in and around the mine, posing a potential environmental hazard. Mine tailings and the porewater extracted from the tailing were investigated to see any evidence of elemental release and migration to adjacent groundwater and soil in the field. The pHs of the tailing range from 6.24 to 7.23. Calcite in the studied area seems to influence on such neutral pH range. Depth profile of mine tailing demonstrate elements have been leached and removed as a consequence of weathering during disposal. This is also supported by the findings from porewater analysis, corresponding the trends in the mine tailings. The concentrations of Cu, Cd, Pb, Zn in the tailing porewater exceed the standard value of EPA for drinking water and this implies groundwater can be contaminated through infiltration of the porewaters, which ultimately will be discharged as leachate from the mine tailing. Groundwater samples collected near the mine area do not show high metal concentrations, except for Fe, which were detected over drinking water standard.

  • PDF

A Correction Method for the Peak Tailing Backgrounds for Accurate Isotope Ratio Measurements of Uranium in Ultra Trace Levels using Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Choi, In-Hee;Park, Su-Jin;Lee, Myung-Ho;Song, Kyu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4327-4331
    • /
    • 2011
  • A new method in thermal ionization mass spectrometry (TIMS) was developed to correct peak tailing backgrounds in the isotope ratio measurements of uranium in ultra trace levels for higher accuracy. Two different uranium standard reference materials (U005 and U030) were used to construct databases of signal intensities at mass 234 u and mass 236 u, which correspond to the two uranium minor isotopes, and signal intensity of $^{238}U$. Correlations between peak tailing backgrounds and $^{238}U$ were obtained by least-squares regression on calculated backgrounds at mass 234 u and mass 236 u with respect to the signal intensity of $^{238}U$ followed by separation of the peak tails of the two major isotopes of uranium ($^{235}U$ and $^{238}U$), which enables us to obtain a master equation for peak tailing background correction on all kinds of samples. Verification of the correction method was carried out using U010 and IRMM-040a.

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

Analiysis of Micro-structure of Cement Mortar Using Waste Fine Tailing with Admixture (폐광미를 시멘트 혼화재료로 이용한 경화체의 미세구조분석)

  • Yu, Seung-Wan;An, Yang-Jin;Mun, Kyoung-Ju;Park, Won-Chun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.743-747
    • /
    • 2005
  • In South Korea, about 900 metal mines have been abandoned, and about 88 million-t metal mine wastes have been discarded in recent years. The treatment of the tailings which are the main wastes in the abandoned metal mines becomes a social problem because they cause environmental pollution such as acidic waste water generation, groundwater contamination, and dust generation. Since almost whole quantities of the tailings have disposed by landfill now, the development of effective recycling methods for the tailings are strongly requested. It is expected that the fine tailings obtained by centrifugal separation process among the tailings can be utilized as admixture for cement. The purpose of this study is to evaluate the micro-structure of cement mortar admixed with fine tailing. Various admixtures were made of Fine tailings and 2 Types of OPC, fly-ash and blast furnace slag. The hydration reactivity of cement mortar with FT was examined by Porosity, XRD and SEM morphology analysis. The anolytical result about hardened hydrates shows that waste fine tailing help hydrates none densified due to it,s filling-space, These densified effect is concluded with improving the resistance to attack of cement mortar including waste fine tailing.

  • PDF

Slope Stability Analysis of Improved Wasted Mine Tailing Landfill Using Fine Recycled-Concrete Aggregates (폐콘크리트 재생잔골재를 활용한 개량 폐광미 매립지의 사면안정해석)

  • Ahn, Nam-Kyu;Kim, Tae-Hyung;Oh, Je-Ill;Lee, Ju-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.145-150
    • /
    • 2005
  • An extensive numerical analysis is carried out to investigate the slope stability of the wasted mine tailing landfill constructed by the utilization of fine recycled-concrete aggregates. To do this, first, the physical and mechanical properties of the fine recycled-concrete aggregates and the wasted mine tailing are investigated, and the settlement and the change of material properly of the fine recycled-concrete aggregates resulted from reaction with water are also examined. The $OH^-$ elution from the fine recycled-concrete aggregates reacted with water slightly causes the change of material properties such as porosity, permeability and waster absorption, but the settlement does not happen noticeably. The results of numerical analysis of the landfill slope built with wasted mine tailing and recycled-concrete aggregates in alternate layer indicate that slope stability increases with decreasing the slope ratio, with decreasing the groundwater level inside slope, and with increasing the depth of fine recycled-concrete aggregate layer. Based on this study, thus, engineers working in related to the wasted mine tailing landfill design and construction using the fine recycled-concrete aggregates should be considered the slope ratio, the groundwater level, the depth of fine recycled-concrete aggregate layer.

Utilization of waste fine tailing as cement mineral admixture (폐광미 미립분의 시멘트 혼화재로의 활용)

  • An, Yang-Jin;Yu, Seung-Wan;Mun, Kyoung-Ju;Park, Won-Chun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study reutilization of waste fine tailing (FT) as admixture for cement and concrete. Various admixtures were made of Fine tailings and 2 Types of OPC, fly-ash and blast furnace slag. Cement mortars and concrete with FT are tested for fluidity and compressive strength. Also, the hydration reactivity of cement mortar with FT was examined by XRD and SEM morphology analysis. This work showed that the waste fine tailing could be effectively utilized as replacement materials of cement without any decrease in the strength if we can control the blaine of materials like cement, blast furnace slag and fly ash.

  • PDF

Hydraulic Analysis of Tailing Dam using GIS (GIS 기법을 이용한 광미댐 수문 분석)

  • Song, Won-Jyong;Heo, Sung;Kim, Tae-Heok
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.375-385
    • /
    • 2008
  • Hydraulic analysis in a dam that has a single outlet of water can be made through a simple comparison between the total precipitation and the volume of discharged water. In case of tailing dams this estimation could yield an error because several drainage facilities are worked independently as well as simultaneously. In this research, a capability of the drainage system in the tailing dam of the old Sangdong Mine was analysed by the means of GIS technic. As a result of this study, it was expected that in the normal working condition of the whole drainage system, the flooding of water over the dam should not occur in spite of the consecutive precipitation during one hour with an intensity of 80.31 mm/hr, a probable precipitation within 100 years. It was, however, revealed that, if the drainage system did not work completely, the water could flood over the dam when the total precipitation reached 251.1 mm.

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF