• Title/Summary/Keyword: tactile sensor

Search Result 145, Processing Time 0.022 seconds

Development of a Distributed Flexible Tactile Sensor System (분포형 유연 촉각센서 시스템의 개발)

  • Yu, Gi-Ho;Yun, Myeong-Jo;Jeong, Gu-Yeong;Gwon, Dae-Gyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.212-218
    • /
    • 2002
  • This research is the development of a distributed tactile sensor using PVDF film far the detection of the contact state. The prototype of the tactile sensor with 8$\times$8 taxels was fabricated using PVDF film and flexible circuitry. In the fabrication procedure, the electrode and the common electrode patterns are attached to the both side of the 28${\mu}m$ thickness PVDF film. The sensor is covered with polyester film for insulation. The signals of a contact pressure to the tactile sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. And the signals are integrated for taking the force profile. The processed signals of the output of the sensor are visualized to take the shape and force distribution of the contact object in personal computer. The usefulness of the sensor system is verified through the sensing examples.

Application of Tactile Slippage Sensation Algorithm in Robot Hand Control System

  • Yussof, Hanafiah;Jaffar, Ahmed;Zahari, Nur Ismarrubie;Ohka, Masahiro
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • This paper presents application of a new tactile slippage sensation algorithm in robot hand control system. The optical three-axis tactile sensor is a type of tactile sensor capable of defining normal and shear forces simultaneously. The tactile sensor is mounted on fingertip of robotic hand. Shear force distribution is used to define slippage sensation in the robot hand system. Based on tactile slippage analysis, a new control algorithm was proposed. To improve performance during object handling motions, analysis of slippage direction is conducted. The control algorithm is classified into two phases: grasp-move-release and grasp-twist motions. Detailed explanations of the control algorithm based on the existing robot arm control system are presented. The experiment is conducted using a bottle cap, and the results reveal good performance of the proposed control algorithm to accomplish the proposed object handling motions.

Development of a Tactile Sensor Array with Flexible Structure Using Piezoelectric Film

  • Yu, Kee-Ho;Kwon, Tae-Gyu;Yun, Myung-Jong;Lee, Seong-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1222-1228
    • /
    • 2002
  • This research is the development of a flexible tactile sensor array for service robots using PVDF (polyvinylidene fluoride) film for the detection of a contact state in real time. The prototype of the tactile sensor which has 8${\times}$8 array using PVDF film was fabricated. In the fabrication procedure, the electrode patterns and the common electrode of the thin conductive tape were attached to both sides of the 281$\mu\textrm{m}$ thickness PVDF film using conductive adhesive. The sensor was covered with polyester film for insulation and attached to the rubber base for a stable structure. The proposed fabrication method is simple and easy to make the sensor. The sensor has the advantages in the implementing for practical applications because its structure is flexible and the shape of the each tactile element can be designed arbitrarily. The signals of a contact force to the tactile sensor were sensed and processed in the DSP system in which the signals are digitized and filtered. Finally, the signals were integrated for taking the force profile. The processed signals of the output of the sensor were visualized in a personal computer, and the shape and force distribution of the contact object were obtained. The reasonable performance for the detection of the contact state was verified through the sensing examples.

Development of Flexible Force Sensor Using Fiber Bragg Grating for Tactile Sensor and Its Evaluation (광섬유 브래그 격자를 이용한 촉각 센서용 유연 단축 힘 센서의 개발 및 평가)

  • Heo, Jin-Seok;Lee, Jung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.51-56
    • /
    • 2006
  • This paper shows the development of flexible force sensor using the fiber Bragg grating. This force sensor consists of a Bragg grating fiber and flexible silicone rubber (DC184, Dow corning co. Ltd). This sensor does not have special structure to maximize the deflection or elongation, but have good sensitivity and very flexible characteristics. In addition, this sensor has the immunity to the electro magnetic field and can be multiplexed easily, which is inherited from the characteristics of fiber Bragg grating sensor. In the future, this sensor can be utilized the tactile sensor system minimizing the sensor size and developing the fabrication method.

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Output Characteristic of a Flexible Tactile Sensor Manufactured by 3D Printing Technique (3D 프린팅 방법으로 제작된 유연 촉각센서의 출력 특성 분석)

  • Jin, Seung Ho;Lee, Ju Kyoung;Lee, Suk;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-156
    • /
    • 2014
  • Flexible tactile sensors can provide valuable feedback to intelligent robots about the environment. This is especially important when the robots, e.g., service robots, are sharing the workspace with human. This paper presents a flexible tactile sensor that was manufactured by direct writing technique, which is one of 3D printing method with multi-walled carbon nano-tubes. The signal processing system consists of two parts: analog circuits to amplify and filter the sensor output and digital signal processing algorithms to reduce undesired noise. Finally, experimental setup is implemented and evaluated to identify the characteristics of the flexible tactile sensor system. This paper showed that this type of sensors can detect the initiation and termination of contacts with appropriate signal processing.

Design and Theoretic Analysis of 3D Tactile Sensor (3D 촉각 센서의 설계와 이론적인 해석)

  • Sim Kwee-Bo;Hwang Han-Kun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.870-874
    • /
    • 2005
  • This paper presents capacitive tactile sensor that can detect normal and shear forces. This tactile sensor consists of index plate, sensing plate, and elastic dielectric layer. The calculated sensing character is based on the changes of space between two horizontal plate. Larger overlap areas and narrow space between top and bottom plate guarantees higher sensitivity. Tactile sense information can be calculated from the changes of phase of output signal. The symmetric arrangement of sensing plates makes the manufacturing process easier and guarantees the stability of the structure. In this paper, the sensor structure is designed, the mechanism of the Proposed sensor is theoretically explained, and the simulated result is presented.

Development of Anthropomorphic Robot Hand with Tactile Sensor: SKKU Hand II (촉각센서를 갖는 인간형 로봇손의 개발: SKKU Hand II)

  • Choi Byung-June;Lee Sang-Hun;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.594-599
    • /
    • 2006
  • In this paper an anthropomorphic robot hand called SKKU Hand IIl is presented, which has a miniaturized fingertip tactile sensor. The thumb is designed as one part of the palm and multiplies the mobility of the palm. The fingertip tactile sensor, based on polyvinylidene fluoride (PVDF) and pressure variable resistor ink, is physically flexible enough to be deformed into any three-dimensional geometry. In order to detect incipient slip, a PVDF strip is arranged along the direction normal to the surface of the finger of the robot hand. Also, a thin flexible sensor to sense the static force as well as the contact location is fabricated into an arrayed type using pressure variable resistor ink. The driving circuits and the tactile sensing systems for the SKKU Hand II are embedded in the hand. Each driving circuit communicates with others using CAN protocol. SKKU Hand II is manufactured and its feasibility is validated through preliminary experiments.

Triboelectrification based Multifunctional Tactile Sensors

  • Park, Hyosik;Kim, Jeongeun;Lee, Ju-Hyuck
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2022
  • Advanced tactile sensors are receiving significant attention in various industries such as extended reality, electronic skin, organic user interfaces, and robotics. The capabilities of advanced tactile sensors require a variety of functions, including position sensing, pressure sensing, and material recognition. Moreover, they should comsume less power and be bio-friendly with human contact. Recently, a tactile sensor based on the triboelectrification effect was developed. Triboelectric tactile sensors have the advantages of wide material availability, simple structure, and low manufacturing cost. Because they generate electricity by contact, they have low power consumption compared to conventional tactile sensors such as capacitive and piezoresistive. Furthermore, they have the ability to recognize the contact material as well as execute position and pressure sensing functions using the triboelectrification effect. The aim of this study is to introduce the progress of research on triboelectrification-based tactile sensors with various functions such as position sensing, pressure sensing and contact material recognition.