• Title/Summary/Keyword: tRNA gene

Search Result 793, Processing Time 0.03 seconds

Gene Mutations of 23S rRNA Associated with Clarithromycin Resistance in Helicobacter pylori Strains Isolated from Korean Patients

  • Kim, Jung-Mogg;Kim, Joo-Sung;Kim, Na-Young;Kim, Yeoung-Jeon;Kim, In-Young;Chee, Young-Joon;Lee, Chul-Hoon;Jung, Hyun-Chae
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1584-1589
    • /
    • 2008
  • Although resistance of Helicobacter pylori to clarithromycin is a major cause of failure of eradication therapies, little information is available regarding gene mutations of clarithromycin-resistant primary and secondary H. pylori isolates in Korea. In the present study, we examined gene mutations of H. pylori 238 rRNA responsible for resistance to clarithromycin. DNA sequences of the 238 rRNA gene in 21 primary clarithromycin-resistant and 64 secondary clarithromycin-resistant strains were determined by PCR amplification and nucleotide sequence analyses. Two mutations of the 238 rRNA gene, A2143G and T2182C, were observed in primary clarithromycin-resistant isolates. In secondary isolates, dual mutation of A2143G+T2182C was frequently observed. In addition, A2143G+T2182C+ T2190C, A2143G+T2182C+C2195T, and A2143G+T2182C+A2223G were observed in secondary isolates. Furthermore, macrolide binding was tested on purified ribosomes isolated from T2182C or A2143C mutant strains with $[^{14}C]$erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the mutant strains. These results indicate that secondary isolates show a greater variety of 238 rRNA gene mutation types than primary isolates, and triple mutations of secondary isolates are associated with A2143G+T2182C in H. pylori isolated from Korean patients.

Construction of Recombinant DNA for Purification of the Gag-Pro Transframe Protein of Human T-cell Leukemia Virus Type I (HTLV-I) (Human T-cell Leukemia Virus Type I (HTLV-I) 의 Gag-Pro Transframe 단백질 정제를 위한 재조합 DNA 의 제작)

  • 남석현
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.466-471
    • /
    • 1992
  • To determine the site at which -1 ribosomal frameshifting occurs within the gag-pro overlap of HTL V-I. DNA fragment corresponding to a portion of the gene overlap was cloned into a SP6 vector. The resultant plasmid harbors the hybrid gene consisting of a synthetic gene encoding 5 amino acids derived from chick prelysozyme including the initiator methionine plus 141 nucleotides of gag-pro overlapping region followed by Staphylococcus aurcus protein A gene fragment. In vitro transcription by SP6 RNA polymerase with this DNA template made an abundant amount of single species mRNA. Cell-free translation programmed with the RNA transcribed in vitro yielded a polypeptide of 21 kDal in size. which could be purified into homogeneity by IgG-Sepharose affinity chromatography. In vitro system described in this study must be useful for rapid purification and sequencing of the Gag-Pro transframe protein. allowing to determine the exact frameshift site on mRNA and to identify the tRNA involved in frameshifting event for the expression of pro gene.

  • PDF

T7 RNA Polymerase Is Expressed in Plants in a Nicked but Active Form (T7 RNA polymerase 유전자의 담배식물에서의 발현)

  • Caviedes, Miguel A.;Thornburg, Robert W.;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.271-276
    • /
    • 1997
  • We have prepared several chimeric constructs containing the bacteriophage T7 RNA polymerase gene under control of the wound-inducible potato proteinase inhibitor II (pin2) promoter and have transformed Nicotiana tabacum plants with these constructs. Southern blot analyses indicate that either one or two copies of the gene constructs are present in the transgenic plants. Northern blot analyses indicate that mRNA encoding T7 RNA polymerase is expressed in a wound-inducible manner. We purified T7 RNA polymerase and prepared antiserum. This antiserum was used for Western blot analyses to demonstrate that a protein which is cross reactive with T7 RNA polymerase is produced. The molecular mass of this protein is 80 kDa, a size which is consistant with the nicked form of the polymerase as is often seen when expressed in E. coli. RNA polymerase assays were used to indicate that the nicked form of T7 RNA polymerase is active and capable of incorporating labeled nucleotides into transcripts in vitro. Analysis of transgenic plants did indeed show that wound-inducible activation of the T7 RNA polymerase permits the establishment of a genetic system to overexpress genes in plants using T7 RNA polymerase(Received March 20, 1997; accepted May 2, 1997)

  • PDF

Hormonal Regulation of Leptin, Resistin, and Plasminogen Activator Inhibitor-1 Gene Expression in 3T3-L1 Adipocytes

  • Lee, Hyun-Jung;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.336-341
    • /
    • 2004
  • Leptin, resisitn and PAI-1 (plasminogen activator inhibitor-1) are synthesized and secreted by rodent fat cells and recently postulated to be an important link to obesity. This study was conducted to characterize the hormonal regulation of leptin, resistin, and PAI-1 gene expression in the 3T3-L1 adipocytes. The cells were treated with 0.5 $\mu$M insulin, 1 $\mu$M dexamethasone (Dex), or 0.05 $\mu$M triiodothyronine (T3) for 72 hours. The mRNA levels of each peptide were measured by semi-quantitative RT-PCR. The mRNA level of the leptin-producing ob gene was significantly increased by insulin, Dex, and T3 by 3.2-, 3.1- and 2.7-fold, respectively, compared to the control (p < 0.05). The level of resistin mRNA was increased by insulin, Dex, and T3 by 2.7-, 2.5- and 2-fold, respectively, compared to the control (p < 0.05). Likewise, the level of PAI-1 mRNA was significantly increased by insulin, Dex, and T3 compared to the control (p < 0.05). Taken together, our results suggest that insulin, Dex, and T3 may regulate the gene expression of leptin, resistin, and PAI-1 in 3T3-L1 adipocytes.

Cloning of RNA1 Gene from Saccharomyces cerevisiae (Saccharomyces cerevisiae에서 RNA1 유전자의 클로닝)

  • 송영환;고상석;이영석;강현삼
    • Korean Journal of Microbiology
    • /
    • v.27 no.2
    • /
    • pp.77-84
    • /
    • 1989
  • The temperature sensitive (ts) mutation on RNA1 gene of Saccharomyces cerevisiae prevents growth at restrictive temperature ($36^{\circ}C$) by accumulation of precursor tRNA, rRNA and mRNA (Hutchison et al., 1969; Shiokawa and Pogo, 1974; Hopper et al., 1978). RNA1 gene was cloned by complementation of the temperature sensitive growth defect of an rna1-1 mutant strain and identified by retransformation and concomitant loss of recombinant plasmid on non-selective condition. By deletion mapping, it was found that RNA1 gene resides within 3.5kb of BgII fragment.

  • PDF

Overexpression and Purification of Bacillus subtilis Glutamyl-tRNA Synthetase in Escherichia coli (대장균에서 Bacillus subtilis glutamyl-tRNA synthetase의 과발현 및 정제)

  • Oh, Jong-Shin;Yoon, Jang-Ho;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.190-194
    • /
    • 2002
  • Expression of Bacillus subtilis glutamyl-tRNA synthetase (GluRS) in Escherichia coli is lethal for the host, probably because this enzyme misaminoacylates ${tRNA_l}^{Gln}$ with glutamate in vivo. In order to overexpress B. subtilis GluRS, encoded by the gltX gene, in E. coli, this gene was amplified from B. subtilis 168 chromosomal DNA using PCR method and the entire coding region was cloned into a pET11a expression vector so that it was expressed under the control or the T7 Promoter. The resulting recombinant pEBER plasmid was transformed into E. coli Novablue (DE3) bearing the T7 RNA polymerase gene for expression. After IPTG treatment, the overproduced enzyme was purified using ammonium sulfate fractionation, Source Q anion exchange chromatography, Superdex-200 gel filtration, and Mono Q anion exchange chromatography. The purified enzyme yielded 18-fold increase in specific activity over the crude cell extract and its molecular weight was approximately 55 kDa on SDS-PAGE.

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.

STADIUM: Species-Specific tRNA Adaptive Index Compendium

  • Yoon, Jonghwan;Chung, Yeun-Jun;Lee, Minho
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.28.1-28.6
    • /
    • 2018
  • Due to the increasing interest in synonymous codons, several codon bias-related terms were introduced. As one measure of them, the tRNA adaptation index (tAI) was invented about a decade ago. The tAI is a measure of translational efficiency for a gene and is calculated based on the abundance of intracellular tRNA and the binding strength between a codon and a tRNA. The index has been widely used in various fields of molecular evolution, genetics, and pharmacology. Afterwards, an improved version of the index, named specific tRNA adaptation index (stAI), was developed by adapting tRNA copy numbers in species. Although a subsequently developed webserver (stAIcalc) provided tools that calculated stAI values, it was not available to access pre-calculated values. In addition to about 100 species in stAIcalc, we calculated stAI values for whole coding sequences in 148 species. To enable easy access to this index, we constructed a novel web database, named STADIUM (Species-specific tRNA adaptive index compendium). STADIUM provides not only the stAI value of each gene but also statistics based on pathway-based classification. The database is expected to help researchers who have interests in codon optimality and the role of synonymous codons. STADIUM is freely available at http://stadium.pmrc.re.kr.

Divergence Analysis of 16S rRNA and rpoB Gene Sequences Revealed from the Harmful Cyanobacterium Microcystis aeruginosa (유해 남조세균 Microcystis aeruginosa의 16S rRNA 및 rpoB 유전자 염기서열 변이 분석)

  • Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.296-302
    • /
    • 2010
  • Microcystis (Cyanobacteria, Chroococcales) is one of the green tide-causing organisms in freshwaters, and some species produce microcystin that is hepatotoxin. In the aspects of freshwater quality controls and health concerns, therefore it is necessary to manage the harmful organisms. In the present study, RNA polymerase beta subunit (rpoB) gene sequences of Microcystis were determined and characterized in order to use a potential marker for the molecular detections of the species. Microcystis rpoB showed high divergences of DNA similarity and genetic distances when compared with those of 16S rRNA, and the molecular differences were statistically significant (Student t-test, p<0.05). Parsimony analyses showed the rpoB gene evolves more than 2-fold faster than 16S rRNA. In addition, phylogeny of the rpoB gene separated each M. aeruginosa strain more clearly compared with a 16S rRNA tree. This study found that the order Chroococcales, including Microcystis, has approximately two rRNA operons and single copy of the rpoB gene in their chromosomes. These results suggest that the rpoB gene is a useful marker for the molecular phylogenetics and the detection of Microcystis.

Effects of $K^+$ lon on in vitro RNA Splicing of T4 Phage Thymidylate Synthase Gene

  • Sung, Jung-Suk;Park, In-Kook
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.49-53
    • /
    • 1996
  • The effects of K$^{+}$ ion on the activity of RNA splicing of T4 phage thymidylate synthase gene have been investigated. The splicing activity was stimulated within the range of 5 to 20 mM concentration of KCI. When the concentration of KCI in the splicing reaction was brought to 100 or 200 mM a small amount of the exonl-intron product (1, 4 kb) was formed with large proportion of primary RNA transcript not undergoing splicing. This observation strongly suggests that there may exist come kinds of interferences with transesterification at the first step of splicing. Overall it can be concluded that K$^{+}$ ion exhibits very unique roles in RNA splicing of tdd gene depending on its concentration.ion.

  • PDF