Browse > Article

Divergence Analysis of 16S rRNA and rpoB Gene Sequences Revealed from the Harmful Cyanobacterium Microcystis aeruginosa  

Ki, Jang-Seu (Department of Green Life Science, Sangmyung University)
Publication Information
Korean Journal of Microbiology / v.46, no.3, 2010 , pp. 296-302 More about this Journal
Abstract
Microcystis (Cyanobacteria, Chroococcales) is one of the green tide-causing organisms in freshwaters, and some species produce microcystin that is hepatotoxin. In the aspects of freshwater quality controls and health concerns, therefore it is necessary to manage the harmful organisms. In the present study, RNA polymerase beta subunit (rpoB) gene sequences of Microcystis were determined and characterized in order to use a potential marker for the molecular detections of the species. Microcystis rpoB showed high divergences of DNA similarity and genetic distances when compared with those of 16S rRNA, and the molecular differences were statistically significant (Student t-test, p<0.05). Parsimony analyses showed the rpoB gene evolves more than 2-fold faster than 16S rRNA. In addition, phylogeny of the rpoB gene separated each M. aeruginosa strain more clearly compared with a 16S rRNA tree. This study found that the order Chroococcales, including Microcystis, has approximately two rRNA operons and single copy of the rpoB gene in their chromosomes. These results suggest that the rpoB gene is a useful marker for the molecular phylogenetics and the detection of Microcystis.
Keywords
Cyanobacteria; DNA similarity; genetic distance; Microcystis; rpoB gene;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Ki, J.S., W. Zhang, and P.Y. Qian. 2009. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J. Microbiol. Methods 77, 48-57.   DOI   ScienceOn
2 Thompson, J.D., D.G. Higgins, and T.J. Gibbson. 1997. Clustal X: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673.
3 Otsuka, S., S. Suda, S. Shibata, H. Oyaizu, S. Matsumoto, and M.M. Watanabe. 2001. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kutzing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int. J. Syst. Evol. Microbiol. 51, 873-879.   DOI   ScienceOn
4 Richert, K., E. Brambilla, and Stackebrandt. 2007. The phylogenetic significance of peptidoglycan types: Molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16S rRNA genes. Syst. Appl. Microbiol. 30, 102-108.   DOI   ScienceOn
5 Ministry of Environment. 2000. Environmental white paper, Seoul.
6 Nakamura, Y., T. Kaneko, S. Sato, M. Ikeuchi, H. Katoh, S. Sasamoto, A. Watanabe, and et al. 2002. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res. 9, 123-130.   DOI   ScienceOn
7 Lee, H.K., J.H. Kim, S.A. Yoo, T.S. Ahn, C.K. Kim, and D.H. Lee. 2003. Primer evaluation for the detection of toxigenic Microcystis by PCR. Korean J. Microbiol. 39, 166-174.   과학기술학회마을
8 Jaiswal, P., P.K. Singh, and R. Prasanna. 2008. Cyanobacterial bioactive molecules-an overview of their toxic properties. Can. J. Microbiol. 54, 701-717.   DOI   ScienceOn
9 Henriksen, P. 1996. Microcystin profiles and contents in Danish populations of cyanobacteria/ blue-green algae as determined by HPLC. Phycologia 35, 102-110.   DOI   ScienceOn
10 Jang, M.H., J.M. Jung, J.D. Yoon, Y.J. Lee, and K. Ha. 2007. Changes in microcystin production in Microcystis aeruginosa exposed to different concentrations of filtered water from phytoplanktivorous and omnivorous fish. Korean J. Limnol. 40, 294-302.   과학기술학회마을
11 Fischer, W.J., B.C. Hitzfeld, F. Tencalla, J.E. Eriksson, A. Mikhailov, and D.R. Dietrich. 2000. Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol. Sci. 54, 365-373.   DOI
12 Bartram, J. and R. Ballance. 1996. Water quality monitoring, a practical guide to the design and implementation of freshwater quality studies and monitoring programmes. E & FN SPON, London.
13 Dahllof, I., H. Baillie, and S. Kjelleberg. 2000. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66, 3376-3380.   DOI   ScienceOn
14 Doers, M.P. and D.L. Parker. 1988. Properties of Microcystis aeruginosa and M. flosaquae (Cyanophyta) in culture: taxonomic implications. J. Phycol. 24, 502-508.
15 Fegatella, F., J. Lim, S. Kjelleberg, and R. Cavicchioli. 1998. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl. Environ. Microbiol. 64, 4433-4438.
16 Neilan, B.A., D. Jacobs, and A.E. Goodman. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61, 3875-3883.
17 Al-Thukair, A.A., R.M. Abed, and L. Mohamed. 2007. Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar. Pollut. Bull. 54, 173-179.   DOI   ScienceOn
18 Tillett, D., D.L. Parker, and B.A. Neilan. 2001. Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacteiral genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl. Environ. Microbiol. 67, 2810-2818.   DOI   ScienceOn
19 Watanabae, M.F. and S. Oishi. 1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl. Environ. Microbiol. 49, 1342-1344.
20 Rudi, K., O.M. Skulberg, F. Larsen, and K.S. Jakobsen. 1997. Strain characterization and classification of oxyphotobacteria in clone cultures on the basis of 16S rRNA sequences from the variable regions V6, V7, and V8. Appl. Environ. Microbiol. 63, 2593-2599.
21 Neilan, B.A., D. Jacobs, T. Del Dot, L.L. Blackall, P.R. Hawkins, P.T. Cox, and A.E. Goodman. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47, 693-697.   DOI   ScienceOn
22 Kaneko, T., N. Nakajima, S. Okamoto, I. Suzuki, Y. Tanabe, M. Tamaoki, Y. Nakamura, and et al. 2007. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res. 14, 247-256.   DOI
23 Lee, J.W., H.W. Yu, and I.S. Kim. 2004. Application of quantum-dot nanocrystals for cyanobacterial toxin-microcystin detection. J. Kor. Soc. Water Qual. 23, 705-711.
24 Ki, J.S. 2009. Heterogeneity analysis of the 16S rRNA gene sequences of the genus Vibrio. Korean J. Microbiol. 45, 430-434.   과학기술학회마을
25 Kim, B.C., E.K. Kim, D.J. Pyo, H.D. Park, and W.M. Heo. 1995. Toxic cyanobacterial blooms in Korean lakes. J. KSWQ Sep. 11, 231-237.
26 Kim, W.H., A.R. Choi, and J.A. Lee. 1999. The occurrence of microcystins in the Naktong River. Algae 14, 319-322.
27 Komarek, J. 1991. A review of water-bloom forming Microcystis species, with regard to population from Japan. Arch. Hydrobiol. Suppl. 92, 115-127.
28 Suh, M.Y., B.H. Kim, and M.S. Han. 2005. Distribution of cyanotoxin microcystin-LR in Han River system and ecological park in Seoul and Kyunggi districts. Korean J. Limnol. 38, 237-248.   과학기술학회마을
29 Welsh, E.A., M. Liberton, J. Stockel, T. Loh, T. Elvitigala, C. Wang, A. Wollam, and et al. 2008. The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc. Natl. Acad. Sci. USA 105, 15094-15099.   DOI   ScienceOn
30 Stanier, R.Y., R. Kunisawa, M. Mandel, and G. Cohen-Bazire. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171-205.
31 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599.   DOI   ScienceOn
32 Ha, J.H., T. Hidaka, and H. Tsunos. 2009. Quantification of toxic Microcystis and evaluation of its dominance ratio in blooms using real-time PCR. Environ. Sci. Technol. 43, 812-818.   DOI   ScienceOn
33 Nishizawa, T., M. Asayama, K. Fujii, K. Harada, and M. Shirai. 1999. Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J. Biochem. 126, 520-526.   DOI
34 Lee, K.L., W.H. Jheong, J.M. Kim, Y.S. Kim, H.J. Choi, and H.S. Kim. 2008. Seasonal variations of cyanobacterial toxins (mirocystins) in Yeongchun Reservoir. Korean J. Limnol. 41, 264-274.   과학기술학회마을
35 Lyra, C., S. Suomalainen, M. Gugger, C. Vezie, P. Sundman, L. Paulin, and K. Sivonen. 2001. Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int. J. Syst. Evol. Microbiol. 51, 513-526.   DOI
36 Ki, J.S., R. Zhang, W. Zhang, Y.L. Huang, and P.Y. Qian. 2009. Analysis of RNA polymerase beta subunit (rpoB) gene sequences for the discriminative power of marine Vibrio species. Microb. Ecol. 58, 679-691.   DOI   ScienceOn
37 Harmsen, D. and H. Karch. 2004. 16S rDNA for diagnosing pathogens: a living tree. American Soc. for Microbiol. News 70, 19-24.
38 Frangeul, L., P. Quillardet, A.M. Castets, H.F. Humbert, H.C. Matthijs, D. Cortez, A. Tolonen, and et al. 2008. Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9, 274.   DOI
39 Gilroy, D.J., K.W. Kauffman, R.A. Hall, X. Huang, and F.S. Chu. 2000. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environ. Health Perspect. 108, 435-439.   DOI   ScienceOn
40 Cho, J.E., S.W. Bang, and M.S. Han. 2004. Development of oligonucleotide primers for the detection of harmful Microcystis in water. Bull. Environ. Contam. Toxicol. 72, 655-662.
41 Cho, H.M. 2005. Emergency measures on algal problems in water resource of the Han River. Seoul Development Institute. Seoul.
42 Castiglioni, B., E. Rizzi, A. Frosini, K. Sivonen, P. Rajaniemi, A. Rantala, M.A. Mugnai, and et al. 2004. Development of a universal microarray based on the ligation detection reaction and 16S rrna gene polymorphism to target diversity of cyanobacteria. Appl. Environ. Microbiol. 70, 7161-7172.   DOI   ScienceOn