• Title/Summary/Keyword: tRNA

Search Result 1,881, Processing Time 0.032 seconds

Anti-obesity Effects of Ethanolic Extract of Polygonatum sibiricum Rhizome in High-fat Diet-fed Mice (고지방식이로 비만이 유도된 마우스에서 황정 주정 추출물의 항비만 효과)

  • Ko, Jong-Hee;Jeon, Woo-Jin;Kwon, Hyuk-Sang;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.499-503
    • /
    • 2015
  • We investigated the anti-obesity effects of ethanolic extract (ID1216) of Polygonatum sibiricum rhizome and its potential underlying mechanism in an animal model. ID1216 treatment decreased body weight gain and white adipose tissue weight in the prevention study. The mRNA levels of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$ ($PGC1{\alpha}$), and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) significantly increased in the epididymal white adipose tissue of ID1216-administered mice. The stimulation effects of ID1216 on these gene expressions were also observed in a cell-based assay using differentiated 3T3-L1 adipocytes. In addition, similar to orlistat, ID1216 treatment improved weight gain and reduced epididymal fat in the treatment model. These results suggest that ID1216 has potential as an anti-obesity agent by modulating the expression of genes related to thermogenesis, lipid metabolism and fatty acid oxidation.

Characterization of Homocysteine ${\gamma}$-Lyase from Submerged and Solid Cultures of Aspergillus fumigatus ASH (JX006238)

  • El-Sayed, Ashraf S.;Khalaf, Salwa A.;Aziz, Hani A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.499-510
    • /
    • 2013
  • Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine ${\gamma}$-lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at $37-40^{\circ}C$, with a $T_m$ value of $70.1^{\circ}C$. The enzyme showed clear catalytic and thermal stability below $40^{\circ}C$, with $T_{1/2}$ values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. Additionally, the enzyme $K_r$ values were 0.002, 0.054, 0.097, 0.184, and 0.341 $S^{-1}$ at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuria-related diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine ($K_m$ 2.46 mM, $K_{cat}\;1.39{\times}10^{-3}\;s^{-1}$), methionine ($K_m$ 4.1 mM, $K_{cat}\;0.97{\times}10^{-3}\;s^{-1}$), and cysteine ($K_m$ 4.9 m M, $K_{cat}\;0.77{\times}10^{-3}\;s^{-1}$). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls.

Anti-skin Aging Potential of Alcoholic Extract of Phragmites communis Rhizome

  • Ha, Chang Woo;Kim, Sung Hyeok;Lee, Sung Ryul;Jang, Sohee;Namkoong, Seung;Hong, Sungsil;Lim, Hyosun;Kim, Youn Kyu;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.604-614
    • /
    • 2020
  • Chronological aging and photoaging affect appearance, causing wrinkles, pigmentation, texture changes, and loss of elasticity in the skin. Phragmites communis is a tall perennial herb used for its high nutritional value and for medicinal purposes, such as relief from fever and vomiting and facilitation of diuresis. In this study, we investigated the effects of ethanol extract of P. communis rhizome (PCE) on skin aging. The total flavonoid and total phenolic content in PCE were 2.92 ± 0.007 ㎍ of quercetin equivalents (QE) and 231.8 ± 0.001 ㎍ of gallic acid equivalents (GAE) per 100 mg of dried extract (n = 3). The half-maximal inhibitory concentration (IC50) values of PCE for 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydrogen peroxide scavenging activities were 0.96 and 0.97 mg/mL, respectively. PCE showed inhibitory effects on tyrosinase when L-tyrosine (IC50 = 1.25 mg/mL) and L-3,4-dihydroxyphenylalanine (IC50 = 0.92 mg/mL) were used as substrates. PCE treatment up to 200 ㎍/mL for 24 h did not cause any significant cytotoxicity in B16F10 melanocytes, human dermal fibroblasts (HDFs), and HaCaT keratinocytes. In B16F10 melanocytes, PCE (25 and 50 ㎍ /mL) inhibited melanin production and cellular tyrosinase activity after challenge with α-melanocyte-stimulating hormone (α-MSH; p < 0.05). In HDFs, PCE suppressed the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced the activity of elastase (p < 0.05). In addition, ultraviolet B (UVB)-mediated downregulation of hyaluronic acid synthase-2 gene expression in HaCaT keratinocytes was also effectively suppressed by PCE treatment. Overall, our results showed that PCE has potential anti-skin aging activity associated with the suppression of hyperpigmentation, wrinkle formation, and reduction in dryness. PCE is a promising candidate for the development of an anti-skin aging cosmetic ingredient.

Differential Expression of Glucose Transporter Gene in Mouse Early Embryos (생쥐 초기배아의 Glucose Transporter유전자 발현 양상에 관한 연구)

  • Youm, Hye-Won;Byun, Hye-Kyung;Song, Gyun-Ji;Kim, Hae-Kwon;Lee, Ho-Joon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.1
    • /
    • pp.77-86
    • /
    • 1998
  • The uptake of glucose for metabolism and growth is essential to most animal cells and is mediated by glucose-transporter (GLUT) proteins. The aim of this study was to determine which class of glucose transporter molecules was responsible for uptake of glucose in the mouse early embryo and at which stage the corresponding genes were expressed. In addition, co-culture system with vero cell was used to investigate the effect of the system on GLUT expression. Two-cell stage embryos were collected from the superovulated ICR female and divided into 3 groups. As a control, embryos were cultured in 0.4% BSA-T6 medium which includes glucose. For the experimental groups, embryos were cultured in either co-culture system with vero cells or glucose-free T6 medium supplemented with 0.4% BSA and pyruvate as an energy substrate. 2-cell to blastocyst stage embryos in those groups were respectively collected into microtubes (50 embryos/tube). Total RNA was extracted and RT-PCR was performed. The products were analysed after staining ethidium bromide by 2% agarose gel electrophoresis. Blastocysts were collected from each group at l20hr after hCG injection. They were fixed in 2.5% glutaraldehyde, stained with hoechst, and mounted for observation. In control, GLUT1 was expressed from 4-cell to blastocyst. GLUT2 and GLUT3 were expressed in morula and blastocyst. GLUT4 was expressed in all stages. When embryos were cultured in glucose-free medium, no significant difference was shown in the expression of GLUT1, 2 and 3, compared to control. However GLUT4 was not expressed until morular stage. When embryos were co-cultured with vero cell, there was no significant difference in the expression of GLUT1, 2, 3 and 4 compared to control. To determine cell growth of embryos, the average cell number of blastocyst was counted. The cell number of co-culture ($93.8{\pm}3.1$, n=35) is significantly higher than that of control and glucose-free group ($76.6{\pm}3.8$, n=35 and $68.2{\pm}4.3$, n=30). This study shows that the GLUT genes are expressed differently according to embryo stage. GLUTs were detectable throughout mouse preimplantation development in control and co-culture groups. However, GLUT4 was not detected from 2- to 8-cell stage but detected from morula stage in glucose-free medium, suggested that GLUT genes are expressed autocrinally in the embryo regardless of the presence of glucose as an energy substrate. In addition, co-culture system can increase the cell count of blastocyst but not improve the expression of GLUT. In conclusion, expression of GLUT is dependent on embryo stage in preimplantation embryo development.

  • PDF

The Scaffolding Protein WAVE1 Associates with Kinesin 1 through the Tetratricopeptide Repeat (TPR) Domain of the Kinesin Light Chain (KLC) (Kinesin Light Chain (KLC)의 Tetratricopeptide Repeat (TPR) 도메인을 통한 Scaffold 단백질 WAVE1과 Kinesin 1의 결합)

  • Jang, Won Hee;Jeong, Young Joo;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.963-969
    • /
    • 2016
  • Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motor proteins essential for the intracellular transport of organelles and protein complexes in cells. Kinesin 1 is a member of those KIFs that transport various cargoes, including organelles, synaptic vesicles, neurotransmitter receptors, cell signaling molecules, and mRNAs through interaction between its light chain subunit and the cargoes. Kinesin light chains (KLCs) are non-motor subunits that associate with the kinesin heavy chain (KHC) dimer. KLCs interact with many different binding proteins, but their particular binding proteins have not yet been fully identified. We used the yeast two-hybrid assay to identify proteins that interact with the tetratricopeptide repeat (TPR) domain of KLC1. We found an interaction between the TPR domain of KLC1 and Wiskott-Aldrich syndrome protein family member 1 (WAVE1), a member of the WASP/WAVE family involved in regulation of actin cytoskeleton. WAVE1 bound to the six TPR domain-containing regions of KLC1 and did not interact with KHCs (KIF5A, KIF5B, and KIF5C) in the yeast two-hybrid assay. The carboxyl (C)-terminal verprolin-cofilin-acidic (VCA) domain of WAVE1 is essential for interaction with KLC1. Also, other WAVE isoforms (WAVE2 and WAVE3) interacted with KLC1 in the yeast two-hybrid assay. When co-expressed in HEK-293T cells, WAVE1 co-localized with KLC1 and co-immunoprecipitated with KLC1 and KIF5B. These results suggest that kinesin 1 motor protein may transport WAVE complexes or WAVE-coated cargoes in cells.

Silybin Synergizes with Wnt3a in Activation of the Wnt/${\beta}$-catenin Signaling Pathway through Stabilization of Intracellular ${\beta}$-Catenin Protein (Silybin에 의한 Wnt/${\beta}$-catenin 신호전달체계의 활성화)

  • Kim, Tae-Yeoun;Oh, Sang-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.50-56
    • /
    • 2012
  • The Wnt/${\beta}$-catenin signaling pathway regulates diverse developmental processes and adult tissue homeostasis. Inappropriate regulation of this pathway has been associated with human diseases, such as cancers, osteoporosis, and Alzheimer's disease. Using a cell-based chemical screening with natural compounds, we discovered silybin, a plant flavonoid isolated from the Silybum marianum, which activated the Wnt/${\beta}$-catenin signaling pathway in a synergy with Wnt3a-conditioned medium (Wnt3a-CM). In the presence of Wnt3a-CM, silybin up-regulated ${\beta}$-catenin response transcription (CRT) in HEK293-FL reporter cells and 3T3-L1 preadipocytes through stabilization of intracellular ${\beta}$-catenin protein. Silybin and Wnt3a-CM synergistically reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated $receptor{\gamma}$ ($PPAR{\gamma}$) and CAATT enhancer-binding protein ${\alpha}$ (C/$EBP{\alpha}$) in 3T3-L1 preadipocytes, accompanied by the activation of Wnt/${\beta}$-catenin signaling pathway. Taken together, our findings indicate that silybin is a small-molecule synergist of the Wnt/${\beta}$-catenin signaling pathway and can be used as a controllable reagent for investigating biological processes that involve the Wnt/${\beta}$-catenin signaling pathway.

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus (사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구)

  • Seo, Yu-Ri;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.

Effect of Cnidium japonicum Miq. Crude Extracts on UVB-induced Photoaging Damage in Human Keratinocytes (HaCaT 세포에서 UVB로 유도된 광노화에 대한 갯사상자 추출물의 효능)

  • Eun Seong Lee;Jung Hwan Oh;Chang-Suk Kong;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.414-421
    • /
    • 2023
  • Cnidium japonicum (C. japonicum) is a type of halophyte that inhabits soil of a high salinity, and according to previous studies, it is known to have antitumor effects. However, the skin's protective effect, particularly against UVB irradiation, has not been revealed. In this study, C. japonicum crude extract was studied to determine its effect on damage to human keratinocytes (HaCaT) induced by UVB irradiation, and ROS assays were performed, the results of which showed that C. japonicum crude extract affects UVB-induced photoaging damage in human keratinocytes. To examine inhibitory effects against the expressions of MMPs, RT-PCR and Western blot assay were performed by treating the crude extract at concentrations of 10, 50, and 100 ㎍/ml by irradiating UVB at 15 mJ/cm2. As a result, it was confirmed that the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-9 decreased in the group treated with C. japonicum crude extract, which also effectively regulated the antioxidant defense mechanism pathway by activating JNK, ERK, and p38. In conclusion, the current study suggested the possibility that C. japonicum could be used as a raw material for anti-photoaging cosmeceuticals in the future.

Correlation between Reactogenicity and Immunogenicity after the ChAdOx1 nCoV-19 and BNT162b2 mRNA Vaccination

  • So Yun Lim;Ji Yeun Kim;Soonju Park;Ji-Soo Kwon;Ji Young Park;Hye Hee Cha;Mi Hyun Suh;Hyun Jung Lee;Joon Seo Lim;Seongman Bae;Jiwon Jung;Nakyung Lee;Kideok Kim;David Shum;Youngmee Jee;Sung-Han Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.41.1-41.13
    • /
    • 2021
  • Correlation between vaccine reactogenicity and immunogenicity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Thus, we investigated to determine whether the reactogenicity after coronavirus disease 2019 vaccination is associated with antibody (Ab) titers and T cell responses. This study was prospective cohort study done with 131 healthcare workers at tertiary center in Seoul, South Korea. The degrees of the local reactions after the 1st and 2nd doses of ChAdOx1 nCov-19 (ChAdOx1) vaccination were significantly associated with the S1-specific IgG Ab titers (p=0.003 and 0.01, respectively) and neutralizing Ab (p=0.04 and 0.10, respectively) in age- and sex-adjusted multivariate analysis, whereas those after the BNT162b2 vaccination did not show significant associations. T cell responses did not show significant associations with the degree of reactogenicity after the ChAdOx1 vaccination or the BNT162b2 vaccination. Thus, high degree of local reactogenicity after the ChAdOx1 vaccine may be used as an indicator of strong humoral immune responses against SARS-CoV-2.

Anti-Osteoporosis Effects of the Fruit of Sea Buckthorn (Hippophae rhamnoides) through Promotion of Osteogenic Differentiation in Ovariectomized Mice

  • Kun Hee Park;Joo-Hyun Hong;Seon-Hee Kim;Jin-Chul Kim;Ki Hyun Kim;Ki-Moon Park
    • Journal of Web Engineering
    • /
    • v.14 no.17
    • /
    • pp.3604-3622
    • /
    • 2022
  • The fruit of Hippophae rhamnoides has been widely used for medicinal purposes because of its anti-inflammatory, antioxidant, antiplatelet, and antimicrobial effects. Since there are no clear reports on the therapeutic efficacy of H. rhamnoides in osteoporosis, this study aimed to confirm the potential use of H. rhamnoides for the treatment of osteoporosis through its osteogenic differentiation-promoting effect in ovariectomized mice. Through an in vitro study, we compared the effects of the EtOH extract of H. rhamnoides fruits (EHRF) on the differentiation of C3H10T1/2, a mouse mesenchymal stem cell line, into osteoblasts based on alkaline phosphatase (ALP) staining and the relative expression of osteogenesis-related mRNAs. The EHRF significantly stimulated the differentiation of mesenchymal stem cells into osteoblasts and showed 7.5 times (* p < 0.05) higher osteogenesis than in the untreated control. A solvent fractionation process of EHRF showed that the hexane-soluble fraction (HRH) showed 10.4 times (** p < 0.01) higher osteogenesis than in the untreated control. Among the subfractions derived from the active HRH by preparative HPLC fractionation, HRHF4 showed 7.5 times (* p < 0.05) higher osteogenesis than in the untreated naïve cells, and HRH and HRHF4 fractions showed 22.6 times (*** p < 0.001) stronger osteogenesis activity than in the negative control. Osteoporosis was induced by excision of both ovaries in 9-week-old female ICR mice for in vivo analysis, and two active fractions, HRH and HRHF4, were administered orally for three months. During the oral administration period, body weight was measured weekly, and bone mineral density (BMD) and body fat density were measured simultaneously using a DEXA machine once a month. In particular, during the in vivo study, the average BMD of the ovariectomized group decreased by 0.0009 g/cm2, whereas the average BMD of the HRH intake group increased by 0.0033 g/cm2 (* p < 0.05) and that of the HRHF4 intake group increased by 0.0059 g/cm2 (** p < 0.01). The HRH and HRHF4 intake groups significantly recovered the mRNA and protein expression of osteogenic genes, including ALP, Osteopontin, Runx2, and Osterix, in the osteoporosis mouse tibia. These findings suggest that the active fractions of H. rhamnoides fruit significantly promoted osteoblast differentiation in mesenchymal stem cells and increased osteogenic gene expression, resulting in an improvement in bone mineral density in the osteoporosis mouse model. Taken together, H. rhamnoides fruits are promising candidates for the prevention and treatment of osteoporosis.