• Title/Summary/Keyword: t-type bar

Search Result 94, Processing Time 0.033 seconds

The Effects of Cement Alkalinity upon the Pore Water Alkalinity and the Chloride Threshold Level of Reinforcing Steel in Concrete

  • Nam Jingak;Hartt William H.;Kim Kijoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.549-555
    • /
    • 2004
  • Cement of three alkalinities (equivalent alkalinities of 0.36,0.52 and 0.97) was employed in fabricating a set of classical G109 type specimens. To-date, these have been subjected to a one week wet-one week dry cyclic pending using 15 w/o NaCl solution. At the end of the dry period, potential and macro-cell current were measured to indicate whether the top reinforcing steel was in the passive or active state. Once this bar became active, the specimen was autopsied and the extent of corrosion was documented. Subsequent to visual inspection, concrete powder samples were collected from the upper region of the top rebar trace; and at a certain times concrete cores were taken from non-reinforced specimens. Using these, determinations were made of (1) critical chloride concentration for corrosion initiation ($Cl_{th}^-$), (2) effective chloride diffusion coefficient ($D_e$), and (3) pore water alkalinity ($[OH^-]$). The pore water alkalinity was strongly related to the alkali content of cement that was used in the mix. The chloride concentration, ($Cl^-$), was greater at active than at passive sites, presumably as a consequence of electro migration and accumulation of these species at active site subsequent to corrosion initiation. Accordingly, ($Cl^-$) at passive sites was considered indicative of the threshold concentration fur corrosion initiation. The $Cl_{th}^-$ was increased with increasing Time-to-corrosion ($T_i$). Consequently, the HA(High Alkalinity) specimens exhibited the highest $Cl_{th}^-$ and the NA(Normal Alkalinity) was the least. This range exceeds what has previously been reported in North America. In addition, the effective diffusion coefficient, $D_e$, was about 40 percent lower for concrete prepared with the HA cement compared to the NA and LA(Low Alkalinity) ones.

Effects of Reinforcing Method Influnced to the Shear Strength of Vertical and Horizontal Joints in Precast Concrete Large Panel Structures -Focused on the Vertical Joints and Slab-Slab Type Horizontal Joints- (대형판조립식 구조 수직.수평접합부의 전단강도에 미치는 보강방법의 영향-수직접합부 및 슬래브-슬래브 수평접합부를 중심으로-)

  • Chung, Lan;Park, Hyun-Soo;Cho, Seung-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.171-179
    • /
    • 1996
  • A proposal of the basic fbrm on the design of joint parts that can increase the shear strength by the useful joint shapes of each member is intended. The vertical joint parameters are the number of' shear key and a variety of' reinfbrcement details and the horizontal joint paramctcrs arc t,hc number of shear key and the direction of' shear f'orcc. 10 PC panel vortical joint arid 12 PC panel horizontal joint specimens were tested to investigate the effects of these parameters. Test results show that : 1. The ductility of the test specimen that has the horizontal reinforcing steels is larger than that does not have. 2. The maximum resisting force of round bar specimen is similar to that of strand wire specimen under the condition of fixed horizontal displacement.

A 3-D RBSM for simulating the failure process of RC structures

  • Zhong, Xingu;Zhao, Chao;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • Rigid body spring method (RBSM) is an effective tool to simulate the cracking process of structures, and has been successfully applied to investigate the behavior of reinforced concrete (RC) members. However, the theoretical researches and engineering applications of this method mainly focus on two-dimensional problems as yet, which greatly limits its applications in actual engineering projects. In this study, a three-dimensional (3-D) RBSM for RC structures is proposed. In the proposed model, concrete, reinforcing steels, and their interfaces are represented as discrete entities. Concrete is partitioned into a collection of rigid blocks and a uniform distribution of normal and tangential springs is defined along their boundaries to reflect its material properties. Reinforcement is modeled as a series of bar elements which can be freely positioned in the structural domain and irrespective of the mesh geometry of concrete. The bond-slip characteristics between reinforcing steel and concrete are also considered by introducing special linkage elements. The applicability and effectiveness of the proposed method is firstly confirmed by an elastic T-shape beam, and then it is applied to analyze the failure processes of a Z-type component under direct shear loading and a RC beam under two-point loading.

Expression of Arabidopsis thaliana SIK (Stress Inducible Kinase) Gene in a Potato Cultivar (Solanum tuberosum L. 'Taedong Valley')

  • Yoon Jung-Ha;Fang Yi-Lan;Park Eung-Jun;Kim Hye-Jin;Na Yun-Jeong;Lee Dong-Hee;Yang Deok-Chun;Lim Hak-Tae
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.202-208
    • /
    • 2005
  • Osmotic stress is one of major limiting factors in crop production. In particular, seasonal drought often causes the secondary disease in the field, resulting in severe reduction in both quality and productivity. Recent efforts have revealed that many genes encoding protein kinases play important roles in osmotic stress signal transduction pathways. Previously, the AtSIK (Arabidopsis thaliana Stress Inducible Kinase) mutants have shown to enhance tolerance to abiotic stresses, accompanying with higher expression of abiotic stress-related genes than did the wild-type plants. In this study, we have transformed potato (cv. Taedong Valley) with the AtSIK expression cassette. Both PCR and RT-PCR using AtSIK-specific primers showed stable integration and expression of the AtSIK gene in individual transgenic lines, respectively. Foliar application of herbicide ($Basta^{(R)}$) at commercial application rate (0.3% (v/v)) revealed another evidence of stable gene introduction of T-DNA which includes the bar gene for herbicide resistance. Overexpression of the AtSIK gene under dual CaMV35S promoter increased sensitivity to salt stress (300 mM NaCl), which was demonstrated by the reduction rate of chlorophyll contents in leaves of transgenic potato lines. These results suggest that possible increase of osmotic tolerance in potato plants may be achieved by antisense expression of AtSIK gene.

  • PDF

Analytical, experimental and numerical study of timber-concrete composite beams for bridges

  • Molina, Julio C.;Calil, Carlito Junior;de Oliveira, Diego R.;Gomes, Nadia B.
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.103-115
    • /
    • 2019
  • In this study, the strength and stiffness (EI) of wood-concrete composite beams for bridges with T-shaped cross section were evaluated. Two types of connectors were used: connectors bonded with epoxy adhesive and connectors attached to the wood just by pre-drilling (without adhesive). The connectors consisted of common steel bars with a diameter of 12.5 mm. Initially, the strength and stiffness (EI) of the beams were analyzed by bending tests with the load applied at the third point of the beam. Subsequently, the composite beams were evaluated by numerical simulation using ANSYS software with focus on the connection system. To make the composite beams, Eucalyptus citriodora wood and medium strength concrete were used. The slip modulus K and the ultimate strength values of each type of connector were obtained by direct shear tests performed on composite specimens. The results showed that the connector glued with epoxy adhesive resulted in better strength and stiffness (EI) for the composite beams when compared to the connector fixed by pre-drilling. The differences observed were up to 10%. The strength and stiffness (EI) values obtained analytically by $M{\ddot{o}}hler^{\prime}$ model were lower than the values obtained experimentally from the bending tests, and the differences were up to 25%. The numerical simulations allowed, with reasonable approximation, the evaluation of stress distributions in the composite beams tested experimentally.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Quantitative Expression Analysis of Functional Genes in Four Dog Breeds (개의 네 품종에서 기능 유전자들에 대한 정량적 발현 분석)

  • Gim, Jeong-An;Kim, Sang-Hoon;Lee, Hee-Eun;Jeong, Hoim;Nam, Gyu-Hwi;Kim, Min Kyu;Huh, Jae-Won;Choi, Bong-Hwan;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.861-869
    • /
    • 2015
  • One of the domesticated species; the dog has been selectively bred for various aims by human. The dog has many breeds, which are artificially selected for specific behaviors and morphologies. Dogs contribute their life to human as working dogs for guide, rescue, detection or etc. Working dogs requires good personality, such as gentleness, robustness and patience for performing their special duty. Many studies have concentrated on finding genetic marker for selecting the high-quality working dog. In this study, we confirmed quantitative expression patterns of eight genes (ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 and TBR1; T-Box, Brain, 1) among brains tissues from four dog breeds (Beagle, Sapsaree, Shepherd and Jindo), because these genes were expressed and have functions in brain mostly. Specially, BARX2, SEPT9, SLC10A4, TBR1 and WNT1 genes were highly expressed in Beagle and Jindo, and Sapsaree and German Shepherd were vice versa. The biological significance of total genes was estimated by database for annotation, visualization and integrated discovery (DAVID) to determine a different gene ontology (GO) class. In these analyses, we suppose to these eight genes could provide influential information for brain development, and intelligence of organisms. Taken together, these results could provide clues to discover biomarker related to functional traits in brain, and beneficial for selecting superior working dogs.

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.

Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice (형질전환 벼에서 brazzein 감미단백질의 안정적인 발현)

  • Lee, Ye Rim;Akter, Shahina;Lee, In Hye;Jung, Yeo Jin;Park, So Young;Cho, Yong-Gu;Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Brazzein is the smallest sweet protein and was isolated from the fruit pulp of Pentadiplandra brazzeana Baillon, native to tropical Africa. From ancient times, the indigenous people used this fruit in their diet to add sweetness to their daily food. Brazzein is 500 to 2000 times sweeter than sucrose on a weight basis and 9500 times sweeter on a molar basis. This unique property has led to increasing interest in this protein. However, it is expensive and difficult to produce brazzein other than in its native growing conditions which limits its availability for use as a food additive. In this study, we report high production yields of, brazzein protein in transgenic rice plants. An ORF region encoding brazzein and driven by the $2{\times}CaMV\;35S$ promoter was introduced into rice genome (Oryza sativa Japonica) via Agrobacterium-mediated transformation. After transformation, 17 regenerated plant lines were obtained and these transgene-containing plants were confirmed by PCR analysis. In addition, the selected plant lines were analyzed by Taqman PCR and results showed that 9 T0 lines were found to have a single copy out of 17 transgenic plants. Moreover, high and genetically stable expression of brazzein was confirmed by western blot analysis. These results demonstrate that recombinant brazzein was efficiently expressed in transgenic rice plants, and that we have developed a new rice variety with a natural sweetener.

The Bond Characteristics of Deformed Bars in High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트와 이형철근의 부착특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Kim, Kyung Hwan;An, Tae Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.511-518
    • /
    • 2009
  • This study was intended to compare and evaluate the adhesion of High flowing Self-compacting Concrete (HSCC), Conventional Concrete (CC) and deformed bar based on concrete strength 3 (30, 50 and 70 MPa), among the factors affecting the bond strength between concrete and rebar, after fabricating the specimen by modifying the rebar position at Horizontal reinforcement at bottom position (HB), horizontal reinforcement at top position (HT) and vertical reinforcement type (V). As a result of measuring bond strength of HB/HT rebar to evaluate the factor of the rebar at top position, the bond strength of HB/HT rebar at 50 and 70 MPa was 1.3 or less and at 30 MPa, HSCC and CC appeared to be 1.2 and 2,1, respectively. Thus, when designing the anchorage length according to the concrete structure design standard (2007) at HSCC 30, 50 and 70 MPa, it would be desirable to reduce the correction factor of anchorage length of the horizontal reinforcement at top position, which is suggested for the reinforcement at top position, to less than 1.3 of CC.