• Title/Summary/Keyword: systems approach method

Search Result 3,718, Processing Time 0.03 seconds

Adaptive Anomaly Movement Detection Approach Based On Access Log Analysis (접근 기록 분석 기반 적응형 이상 이동 탐지 방법론)

  • Kim, Nam-eui;Shin, Dong-cheon
    • Convergence Security Journal
    • /
    • v.18 no.5_1
    • /
    • pp.45-51
    • /
    • 2018
  • As data utilization and importance becomes important, data-related accidents and damages are gradually increasing. Especially, insider threats are the most harmful threats. And these insider threats are difficult to detect by traditional security systems, so rule-based abnormal behavior detection method has been widely used. However, it has a lack of adapting flexibly to changes in new attacks and new environments. Therefore, in this paper, we propose an adaptive anomaly movement detection framework based on a statistical Markov model to detect insider threats in advance. This is designed to minimize false positive rate and false negative rate by adopting environment factors that directly influence the behavior, and learning data based on statistical Markov model. In the experimentation, the framework shows good performance with a high F2-score of 0.92 and suspicious behavior detection, which seen as a normal behavior usually. It is also extendable to detect various types of suspicious activities by applying multiple modeling algorithms based on statistical learning and environment factors.

  • PDF

Design of Optimized ARIA Crypto-Processor Using Composite Field S-Box (합성체 S-Box 기반 최적의 ARIA 암호프로세서 설계)

  • Kang, Min Sup
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.271-276
    • /
    • 2019
  • Conventional ARIA algorithm which is used LUT based-S-Box is fast the processing speed. However, the algorithm is hard to applied to small portable devices. This paper proposes the hardware design of optimized ARIA crypto-processor based on the modified composite field S-Box in order to decrease its hardware area. The Key scheduling in ARIA algorithm, both diffusion and substitution layers are repeatedly used in each round function. In this approach, an advanced key scheduling method is also presented of which two functions are merged into only one function for reducing hardware overhead in scheduling process. The designed ARIA crypto-processor is described in Verilog-HDL, and then a logic synthesis is also performed by using Xilinx ISE 14.7 tool with target the Xilnx FPGA XC3S1500 device. In order to verify the function of the crypto-processor, both logic and timing simulation are also performed by using simulator called ModelSim 10.4a.

Smart sensors for monitoring crack growth under fatigue loading conditions

  • Giurgiutiu, Victor;Xu, Buli;Chao, Yuh;Liu, Shu;Gaddam, Rishi
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.101-113
    • /
    • 2006
  • Structural health monitoring results obtained with the electro-mechanical (E/M) impedance techniqueand Lamb wave transmission methods during fatigue crack propagation of an Arcan specimen instrumented with piezoelectric wafer active sensors (PWAS) are presented. The specimen was subjected in mixed-mode fatigue loading and a crack was propagated in stages. At each stage, an image of the crack and the location of the crack tip were recorded and the PWAS readings were taken. Hence, the crack-growth in the specimen could be correlated with the PWAS readings. The E/M impedance signature was recorded in the 100 - 500 kHz frequency range. The Lamb-wave transmission method used the pitch-catch approach with a 3-count sine tone burst of 474 kHz transmitted and received between various PWAS pairs. Fatigue loading was applied to initiate and propagate the crack damage of controlled magnitude. As damage progressed, the E/M impedance signatures and the waveforms received by receivers were recorded at predetermined intervals and compared. Data analysis indicated that both the E/M impedance signatures and the Lamb-wave transmission signatures are modified by the crack progression. Damage index values were observed to increase as the crack damage increases. These experiments demonstrated that the use of PWAS in conjunction with the E/M impedance and the Lamb-wave transmission is a potentially powerful tool for crack damage detection and monitoring in structural elements.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Criteria for processing response-spectrum-compatible seismic accelerations simulated via spectral representation

  • Zerva, A.;Morikawa, H.;Sawada, S.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.341-363
    • /
    • 2012
  • The spectral representation method is a quick and versatile tool for the generation of spatially variable, response-spectrum-compatible simulations to be used in the nonlinear seismic response evaluation of extended structures, such as bridges. However, just as recorded data, these simulated accelerations require processing, but, unlike recorded data, the reasons for their processing are purely numerical. Hence, the criteria for the processing of acceleration simulations need to be tied to the effect of processing on the structural response. This paper presents a framework for processing acceleration simulations that is based on seismological approaches for processing recorded data, but establishes the corner frequency of the high-pass filter by minimizing the effect of processing on the response of the structural system, for the response evaluation of which the ground motions were generated. The proposed two-step criterion selects the filter corner frequency by considering both the dynamic and the pseudo-static response of the systems. First, it ensures that the linear/nonlinear dynamic structural response induced by the processed simulations captures the characteristics of the system's dynamic response caused by the unprocessed simulations, the frequency content of which is fully compatible with the target response spectrum. Second, it examines the adequacy of the selected estimate for the filter corner frequency by evaluating the pseudo-static response of the system subjected to spatially variable excitations. It is noted that the first step of this two-fold criterion suffices for the establishment of the corner frequency for the processing of acceleration time series generated at a single ground-surface location to be used in the seismic response evaluation of, e.g. a building structure. Furthermore, the concept also applies for the processing of acceleration time series generated by means of any approach that does not provide physical considerations for the selection of the corner frequency of the high-pass filter.

A Study on the Characteristic of Heat Transfer of PCM(Phase Change Material) at the Simultaneous Charging and Discharging Condition (동시 축·방열 조건에서 PCM의 열전달 특성에 관한 연구)

  • Lee, Donggyu;Park, Sechang;Chung, Dong-yeol;Kang, Cheadong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.8
    • /
    • pp.305-310
    • /
    • 2016
  • A thermal storage systems was designed to correspond to the temporal or quantitative variation in the thermal energy demand, and most of its heat is stored using the latent and sensible heat of the heat storage material. The heat storage method using latent heat has a very complex phenomenon for heat transfer and thermal behavior because it is accompanied by a phase change in the course of heating/cooling of the heat storage material. Therefore, many studies have been conducted to produce an experimentally accessible as well as numerical approach to confirm the heat transfer and thermal behavior of phase change materials. The purpose of this study was to investigate the problems encountered during the actual heat transfer from an internal storage tank through simulation of the process of storing and utilizing thermal energy from the thermal storage tank containing charged PCM. This study used analysis methods to investigate the heat transfer characteristics of the PCM with simultaneous heating/cooling conditions in the rectangular space simulating the thermal storage tank. A numerical analysis was carried out in a state considering natural convection using the ANSYS FLUENT(R) program. The result indicates that the slope of the liquid-solid interface in the analysis field changed according to the temperature difference between the heating surface and cooling surface.

An optimization method for variable length information messages (가변 길이 정보 메시지 최적화 방법)

  • Kim, Jingyu;Kang, Sungwon;Jung, Pilsu;Kim, Jungmin;Baek, Haeun;Kwon, Koo Hyung;Kim, Sang Soo
    • Journal of Software Engineering Society
    • /
    • v.26 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • Variable length information message is a communication protocol standard in order for computer network systems to provide efficient delivery of information. The variable length information messages were developed for varying and controlling details of information in accordance with message receiver's required information level or information access level. In the previous studies, data compressing techniques have been in use for information message optimization technologies in order to reduce physical sizes of information messages. In optimization technologies for information messages, accuracy of information is considered as the most important factor; therefore, only non-loss compression techniques are applied to the optimization technologies. However, the non-loss compression based information message optimization methods are not efficient in data compression, and these are limited to efficient delivery of information in wireless network environments that have constraint bandwidth. In this paper, we attempt to optimize information in the variable length information messages at message fields in order to reduce physical sizes of messages more efficiently. To demonstrate the efficiency of our approach, we conduct optimization experiments for variable length information messages.

  • PDF

A Study on the Analysis Method of Technology Trend on Tactical Data Link Using Intellectual Property Information (지식재산 정보를 이용한 전술데이터링크 기술동향 분석방법 연구)

  • Noh, Giseop
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.539-544
    • /
    • 2021
  • The tactical data link is a military data network to improve the ability to recognize battlefield situations. The ROK military is promoting the tactical data link performance improvement programs. Tactical data link is essential to combine and integrate various platforms, sensor data, and command and control (C2) systems. Therefore, the research on related technical fields is required. However, the tactical data link has not disclosed detailed technical information due to the characteristics of military operation. In this paper, we propose a data-based automated analysis methodology using intellectual property information to understand the technology trend of tactical data link. In this paper, data related to intellectual property is automatically collected and pre-processed, and analyzed in terms of time series. In addition, the current status of each institution of patent technology information was generated, and the process of identifying key-researchers through network analysis was presented with providing results of our approach in this paper.

A Secure Active Packet Transfer using Cryptographic Techniques (암호 기술을 이용한 안전한 능동 패킷 전송)

  • 김영수;나중찬;손승원
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.135-145
    • /
    • 2002
  • Active networks represent a new approach to network architecture. Nodes(routers, switches, etc.) can perform computations on user data, while packets can carry programs to be executed on nodes and potentially change the state of them. While active networks provide a flexible network iufrastructure, they are more complex than traditional networks and raise considerable security problems. Nodes are Public resources and are essential to the proper and contract running of many important systems. Therefore, security requirements placed upon the computational environment where the code of packets will be executed must be very strict. Trends of research for active network security are divided into two categories: securing active nodes and securing active packets. For example, packet authentication or monitoring/control methods are for securing active node, but some cryptographic techniques are for the latter. This paper is for transferring active packets securely between active nodes. We propose a new method that can transfer active packets to neighboring active nodes securely, and execute executable code included in those packets in each active node. We use both public key cryptosystem and symmetric key cryptosystem in our scheme