• Title/Summary/Keyword: systems approach method

Search Result 3,708, Processing Time 0.037 seconds

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

Optimization-based method for structural damage detection with consideration of uncertainties- a comparative study

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.561-574
    • /
    • 2018
  • In this paper, for efficiently reducing the computational cost of the model updating during the optimization process of damage detection, the structural response is evaluated using properly trained surrogate model. Furthermore, in practice uncertainties in the FE model parameters and modelling errors are inevitable. Hence, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The current work builds a framework for Probability Based Damage Detection (PBDD) of structures based on the best combination of metaheuristic optimization algorithm and surrogate models. To reach this goal, three popular metamodeling techniques including Cascade Feed Forward Neural Network (CFNN), Least Square Support Vector Machines (LS-SVMs) and Kriging are constructed, trained and tested in order to inspect features and faults of each algorithm. Furthermore, three wellknown optimization algorithms including Ideal Gas Molecular Movement (IGMM), Particle Swarm Optimization (PSO) and Bat Algorithm (BA) are utilized and the comparative results are presented accordingly. Furthermore, efficient schemes are implemented on these algorithms to improve their performance in handling problems with a large number of variables. By considering various indices for measuring the accuracy and computational time of PBDD process, the results indicate that combination of LS-SVM surrogate model by IGMM optimization algorithm have better performance in predicting the of damage compared with other methods.

Haplotype Inference Using a Genetic Algorithm (유전자 알고리즘을 이용한 하플로타입 추론)

  • Lee See-Young;Han Hyun-Goo;Kim Hee-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.316-325
    • /
    • 2006
  • In diploid organisms like human, each chromosome consists of two copies. A haplotype is a SNP(single nucleotide polymorphism) sequence information from each copy. Finding the complete map of haplotypes in human population is one of the important issues in human genome. To obtain haplotypes via experimental methods is both time-consuming and expensive. Therefore, inference methods have been used to infer haplotyes from the genotype samples. In this paper, we propose a new approach using genetic algorithm to infer haplotypes, which is based on the model of finding the minimum number of haplotypes that explain the genotype samples. We show that by doing a computational experiment, our algorithm has the correctness similar to HAPAR[1] which is known to produce good results while the execution time of our algorithm is less than that of HAPAR as the input size is increased. The experimental result is also compared with the result by the recent method PTG[2].

Design of the Fuzzy Logic Cross-Coupled Controller using a New Contouring Modeling (새로운 윤곽 모델링에 의한 퍼지논리형 상호결합제어기 설계)

  • Kim, Jin-Hwan;Lee, Je-Hie;Huh, Uk-Youl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper proposes a fuzzy logic cross-coupled controller using a new contouring modeling for a two-axis servo system. The general decoupled control approach may result in degraded contouring performance due to such factors as mismatch of axial dynamics and axial loop gains. In practice, such systems contain many uncertainties. The cross-coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the conventional cross-coupled controllers cannot overcome friction, backlash, and parameter variations. Also since, it is difficult to obtain an accurate mathematical model of multi-axis system, here we investigate a fuzzy logic cross-coupled controller of servo system. In addition, new contouring error vector computation method is presented. The experimental results are presented to illustrate the performance of the proposed algorithm.

  • PDF

Sensor Fusion for Motion Capture System (모션 캡쳐 시스템을 위한 센서 퓨전)

  • Jeong, Il-Kwon;Park, ChanJong;Kim, Hyeong-Kyo;Wohn, KwangYun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.6 no.3
    • /
    • pp.9-15
    • /
    • 2000
  • We Propose a sensor fusion technique for motion capture system. In our system, two kinds of sensors are used for mutual assistance. Four magnetic sensors(markers) are attached on the upper arms and the back of the hands for assisting twelve optical sensors which are attached on the arms of a performer. The optical sensor information is not always complete because the optical markers can be hidden due to obstacles. In this case, magnetic sensor information is used to link discontinuous optical sensor information. We use a system identification techniques for modeling the relation between the sensors' signals. Dynamic systems are constructed from input-output data. We determine the best model from the set of candidate models using the canonical system identification techniques. Our approach is using a simple signal processing technique currently. In the future work, we will propose a new method using other signal processing techniques such as Wiener or Kalman filter.

  • PDF

The Formalization of a Temporal Object Oriented Model Based on an Attribute versioning (속성 버전화에 기반한 시간지원 객체지향 모델의 형식화)

  • 이홍로;김삼남;류근호
    • Proceedings of the Korea Database Society Conference
    • /
    • 1997.10a
    • /
    • pp.483-503
    • /
    • 1997
  • One important question that arises when dealing with temporal databases in context of object-oriented systems is the method that associates time with attributes relationship semantics. Results of previous work about attribute versioning, particularity extending flat(First Normal Form: FNF) or nested(Non-First Normal Form: NFNF) relational models. are not applicable to temporal object-oriented databases. This is because object-oriented models provide more powerful constructs than traditional models for structuring complex objects. Therefore, this paper presents an formal approach for incorporating temporal extension to object-oriented databases. Our goal in this paper is to study temporal object-oriented database representation according to generalization, aggregation and association among objects. We define tile concepts of attribute versioning in temporal object-oriented model, and we concentrate on the representation of temporal relationship among objects. Another contribution of this paper is to specify time constraints on relationship semantics and analyze our model based on representation criteria. By means of formalizing tile temporal object oriented model, this paper can not only provide tile robust operating functions that design algebraic operators, but also entrance the reuse of modules.

  • PDF

Weight setting of major environmental assessment items using Analytical Hierarchy Process - Case for the selection of railroad route - (계층분석법을 통한 환경영향평가 중점항목의 가중치 설정 - 철도사업 노선선정을 대상으로 -)

  • Lee, Minjoo;Kim, Minkyung;Lee, Sangdon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.517-526
    • /
    • 2014
  • This paper performed studies on a guide for an environmental assessment necessary to select railroad route optimally, and presented techniques for an environmental friendly route selection using AHP(Analytical Hierarchy Process) as an objective method. The AHP is an approach to decision making that involves multiple choice criteria into a hierarchy and assessing the relative importance of each criterion, and determining an overall ranking of the alternatives. For the purpose of this study, we established the weight and the order of major environmental assessment items based on the survey of experts. The results of the weight by AHP were in order of Fauna & Flora, Topography & Geology, Nature Environmental Assets, Noise & Vibration, Water Quality, Landscape and Air Quality indicating natural environment should be in priority. To develop the more efficient environmental friendly route selection systems, it is necessary to consider economical, technical, and social aspects in addition to environmental consideration.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume Conservation

  • Zhang, Xiaorui;Wu, Hailun;Sun, Wei;Yuan, Chengsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1738-1756
    • /
    • 2020
  • To improve the accuracy and realism of the virtual surgical simulation system, this paper proposes an optimized mass-spring model with shape restoration ability based on volume conservation to simulate soft tissue deformation. The proposed method constructs a soft tissue surface model that adopts a new flexion spring for resisting bending and incorporates it into the mass-spring model (MSM) to restore the original shape. Then, we employ the particle swarm optimization algorithm to achieve the optimal solution of the model parameters. Besides, the volume conservation constraint is applied to the position-based dynamics (PBD) approach to maintain the volume of the deformable object for constructing the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system on the PHANTOM OMNI force tactile interaction device to realize the deformation simulation of the virtual liver. Experimental results show that the proposed model has a good shape restoration ability and incompressibility, which can enhance the deformation accuracy and interactive realism.