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Abstract 
 

To improve the accuracy and realism of the virtual surgical simulation system, this paper 
proposes an optimized mass-spring model with shape restoration ability based on volume 
conservation to simulate soft tissue deformation. The proposed method constructs a soft 
tissue surface model that adopts a new flexion spring for resisting bending and incorporates 
it into the mass-spring model (MSM) to restore the original shape. Then, we employ the 
particle swarm optimization algorithm to achieve the optimal solution of the model 
parameters. Besides, the volume conservation constraint is applied to the position-based 
dynamics (PBD) approach to maintain the volume of the deformable object for constructing 
the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system 
on the PHANTOM OMNI force tactile interaction device to realize the deformation 
simulation of the virtual liver. Experimental results show that the proposed model has a good 
shape restoration ability and incompressibility, which can enhance the deformation accuracy 
and interactive realism. 
 
 
Keywords: Virtual surgery, soft tissue deformation, mass-spring model, position-based 
dynamics, particle swarm optimization algorithm 
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1. Introduction 

Traditional surgical training system regards human corpses, rubber mannequins or animals 
as objects for training and simulation. However, human corpses cannot be reused after 
dissection, and the animal body is distinct from the human body in terms of physiological 
structure. In addition, corpses, especially human corpses, are in an extreme shortage [1]. 
These make traditional surgical training suffer from severe challenges. With the 
development of simulation technology, virtual surgical training system has become an 
alternative to the traditional surgical training system, which plays an important part in 
clinical medicine [2]. The virtual surgical training system not only renders a virtual 
environment with a sense of interaction and realism for the clinical practice but also helps 
doctors to practice repeatedly by making a reasonable surgical scheme, which improves 
training efficiency and reduces the cost and risk of surgery. Therefore, virtual surgical 
training system is of great significance for the development of medical science [3]. 

Modeling soft tissue deformation is one of the most critical techniques in the virtual 
surgical training system [4]. The common models for soft tissue deformation are the finite 
element model (FEM) [5-7], mass-spring model (MSM) [8-12] and position-based dynamics 
(PBD) approach [13-15]. Since the FEM can capture the biological characteristics of soft 
tissue precisely by Young's modulus and Poisson's ratio, it has a good deformation accuracy. 
However, the computational cost is expensive when reorganizing the mesh topologies, 
therefore not suitable for real-time deformation. MSM is simple and easy to implement and 
has a small computation amount of deformation and reliable real-time performance. 
However, the parameters of the mass-spring model (MSM) not connected with the biological 
characteristics of the soft tissue, resulting in poor model stability and low deformation 
accuracy. The PBD approach adopts the structure of point clouds, which do not require a 
complex topological relationship between points, and can directly control the position of 
objects. In addition, the model can describe the volumetric characteristic of the object, has 
high speed, strong stability, and good controllability. However, its accuracy is lower than 
that of FEM and MSM. 

To address the above-mentioned challenges, this paper proposed an optimized mass-spring 
model with shape restoration ability based on volume conservation to simulate the 
deformation of a virtual liver. Our proposed MSM incorporates a new flexion spring to 
construct the surface model, uses the particle swarm optimization algorithm to optimize the 
model parameters, employs the PBD approach to conduct volume conservation constraint for 
characterizing the volumetric characteristic. The contributions of this paper are included:   

(i) Incorporate a new flexion spring to the MSM for resisting bending based on the angle 
between the initial position vector and final position vector after the external force is 
removed, so as to improve the shape restoration ability for the surface of the MSM, 
especially when large deformation occurs. 

(ii) Utilize the particle swarm optimization algorithm to optimize the elastic coefficient 
and damping coefficient of the MSM. Choose the FEM [16] as the reference model, and 
establishes a fitness function between these two parameters and the Young’s modulus and 
Poisson’s ratio. Tune the parameters by minimizing the fitness function until the deformation 
of the proposed MSM is close enough to the FEM, thereby improving the accuracy and 
realism of the deformation. 
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(iii) Adopt the PBD approach to conduct the volume conservation constraint based on 
tetrahedron elements for the interior structure of soft tissue in order to ensure the 
incompressibility, i.e., maintain the volume of the soft tissue. 

The rest of this paper is organized as follows: Section 2 illustrate our proposed model. 
Experimental results and analysis are demonstrated in Section 3. Finally, Section 4 gives a 
conclusion on our model. 

2. Method 
This paper proposed an optimized MSM with shape restoration ability based on volume 
conservation, which can simulates the volumetric characteristic of soft tissue. A particle 
swarm optimization algorithm is applied to optimize the model parameters, which can 
characterize the biological characteristics of soft tissue. The proposed model effectively 
enhances the shape restoration ability, accuracy and realism of deformation, and simulates 
the incompressibility of the soft tissue. The modeling procedure is shown in Fig. 1. 

Start

Incorporate a new flexion spring to 
the MSM

Optimize model parameters with 
particle swarm optimization algorithm

Establish deformation calculation 
model

Conduct volume conservation 
constraint with the PBD approach

End
 

Fig. 1. Modeling procedure 
 

2.1 MSM with a Flexion Spring 

The traditional MSM utilizes discrete mass points and springs together with dampers as the 
connection to create a surface model. When an external force is applied on the surface, the 
elastic force and the damping force are generated by the spring unit to resist the external 
force. Moreover, the external force will be transmitted to the adjacent point through the 
spring unit and then to the farther adjacent point, bringing about the soft tissue deformation. 
However, the traditional MSM has a weak shape restoration ability and cannot accurately 
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simulate the deformation when the large deformation occurred. To increase the shape 
restoration ability, we incorporate a new flexion spring into the MSM to resist bending. 

   
(A) (B) (C) 

Fig. 2. The topological structure of surface model in MSM (A) Triangular mesh (B) Quadrilateral 
mesh (C) Hexagonal mesh 

 
The common surface model in MSM has three different kinds of topological structures, 

namely triangular mesh, quadrilateral mesh, and hexagonal mesh, as shown in Fig. 2. The 
quadrilateral mesh cannot recover its original shape after deformation, the hexagonal mesh is 
difficult and complicated for simulation, and the triangular mesh has strong stability to 
model objects. Therefore, the triangular mesh is employed to construct the surface model, 
where each triangular mesh consists of three mass points and three spring units, and each 
spring unit is composed of a structure spring, a damper, and a flexion spring, as shown in Fig. 
3. The structure spring is used to describe the linear elasticity of the soft tissue, the damper is 
used to represent the damping characteristic of the soft tissue, and the flexion spring is used 
to resist bending to improve the shape restoration ability of the soft tissue. 
 

 
Fig. 3. The structure of spring unit 

 
In this paper, the surface model of the virtual liver is constructed on triangular meshes. 

Suppose that triangular meshes consist of a set of points N  and a set of spring units M , 
two arbitrary adjacent points ix  and jx , , 1,2,...,i j N=  and i j≠ , are connected by the 
spring unit. Structure spring and flexion spring are following the Hooke's law. When the 
external force extf  is applied on the point ix , according to the Hooke's law, the structure 

spring force s
ijf  at time t  is computed as follows: 

 

0(|| || || || )
|| ||

ijs s
ij ij ij ij

ij

l
f k l l

l
= −  (1) 
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( ) ( )ij j il x t x t= −  (2) 
 
where s

ijk  is the elastic coefficient of the structure spring connecting ix  and jx , 
ijl  is 

the current displacement vector between ix  and jx  at time t, || ||ijl  represents the 

modulus of the vector 
ijl , and 0|| ||ijl  denotes the initial distance between ix  and jx . 

Similarly, the damping force d
ijf  at time t  is given as follows: 

 
.

d d
ij ij ijf c l= ∆  (3) 

 
0|| || || ||ij ij ijl l l∆ = −  (4) 

 
where d

ijc  is the damping coefficient of the damper connecting ix  and jx , and 
.

ijl∆  is 

the derivative of 0|| || || ||ij ijl l− . 
Since the traditional MSM is difficult to achieve a good shape restoration ability during 

the deformation simulation, the soft tissue cannot recover its original shape when the 
external force exerted to model surface is removed. Good shape restoration ability is of great 
significance for simulation [17]. To obtain a high-realism deformation model, a new type of 
flexion spring is incorporated into the traditional MSM for resisting bending and flexion 
spring force, which ensures the connecting points can return their initial positions. The 
flexion spring force f

ijf  at time t  is defined as follows: 
 

| (0) (0) | | |
ij ijf f

ij ij
j i ij

d
f k

x x d
θ

= ⋅ ⋅
−

 (5) 

 
where f

ijk  is the elastic coefficient of the flexion spring connecting ix  and jx , ijθ  is 

the angle between the vector (0) (0)j ix x−  and ( ) ( )j ix t x t− , | (0) (0) |j ix x−  is the modulus 

of the vector (0) (0)j ix x− , and ijd  is the direction vector of the flexion spring force, which 
can be defined as follows: 
 

[ ( ) ( )] [ (0) (0)] [ ( ) ( )]
| [ ( ) ( )] [ (0) (0)] [ ( ) ( )] |

j i j i j i
ij

j i j i j i

x t x t x x x t x t
d

x t x t x x x t x t
− ⊗ − ⊗ −

=
− ⊗ − ⊗ −

 (6) 

 
where ⊗  represents the cross product operation. The angle ijθ  is computed as 
 

[ ( ) ( )] [ (0) (0)]
arccos{ }

| ( ) ( ) | | (0) (0) |
j i j i

ij
j i j i

x t x t x x
x t x t x x

θ
− −

=
− ⋅ −

o
 (7) 
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where o represents the dot product operation. 

 
Fig. 4. Schematic diagram of the flexion spring 

 
The function of the flexion spring is described in Fig. 4. We select a triangular mesh 

containing points ix , 
jx  and kx  from the surface model and fix the position of points 

jx  and kx . We can observe that, assuming an external force extf  is acted on the point ix  
at time t , the point can move from the initial position (0)ix  to the position ' ( )ix t  and 
produce displacement. When the external force is withdrawn, the point will eventually move 
to the position ( )ix t  instead of the position (0)ix  because its kinetic energy has not been 
exhausted, which means that the point ix  is unable to return to its initial position after the 
external force is removed. At this time, it is necessary to incorporate the flexion spring and 
apply it on the point ix  to guarantee it can return to the initial position (0)ix  from the 
current position ( )ix t , i.e., let the angle θ  be equal to zero. 

The points 
jx  and kx  are not fixed at time t  in the real situation. The point 

jx  

moves to the position ( )jx t  from the initial position (0)jx , and the point kx  moves to the 
position ( )kx t  from the initial position (0)kx  under the external force. So the flexion 
spring ought to be employed to resist bending, ensuring that the point ix  can return to the 

initial position, which enables the angle ijθ  between the initial vector (0) (0)i jx x−  and the 
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final vector ( ) ( )i jx t x t−  be equal to zero. Similarly, the angle ikθ  between vectors 
(0) (0)i kx x−  and ( ) ( )i kx t x t−  also can be easily return to zero. Therefore, the soft tissue can 

successfully return to the original shape when deformation generates. 

2.2 Parameter Optimization 

A common problem in MSM is that the model parameters cannot characterize the biological 
characteristics of the soft tissue, resulting in poor model stability and low simulation 
accuracy. This is because the biological characteristics are expressed with Young's modulus 
and Poisson's ratio, while the elastic coefficient and damping coefficient in MSM are not 
associated with them. Therefore, for achieving a behavioral realism experienced by surgeons, 
these two parameters are often obtained by trial and error. In this paper, we take the FEM, 
which has high accuracy and realism as the reference model, and employ the particle swarm 
optimization algorithm to optimize the elastic coefficient and damping coefficient. 

The particle swarm optimization algorithm is suitable for the problem of finding the 
optimal solution of the elastic coefficient and damping coefficient. The flow chart is 
presented in Fig. 5. In this paper, the objective of the optimization problem is to minimize 
the difference in position of the corresponding points in our MSM and the reference model 
FEM, i.e., find the optimal values of these parameters so that the deformation caused by our 
MSM is close enough to the one caused by the reference model FEM. 
 

Start

Initialize each particle

Evaluate each particle and obtain 
the global optimal solution 

Update the velocity and position   of 
each particle

the value of fitness function < 1

Update the best position of each 
particle from the beginning to now   

Update the global optimal solution of 
group

End

Yes

No

 
Fig. 5. The procedure of parameter optimization using particle swarm optimization algorithm 
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We discretize the model surface based on the FEM into a set of points N, and these points 
have the same position as points in our MSM. Assuming all structure springs have the same 
elastic coefficients, all flexion springs have the same elastic coefficients, all dampers have 
the same damping coefficients, and two models are subjected to the identical external force. 
The fitness function is defined to describe the optimization problem in our paper is achieve 
the optimal solution of the elastic coefficient and damping coefficient as follows: 
 

( , , ) | ( , , , ) | | ( , , ) |s f MSM s f FEM
i ext i ext

i
k k d x k k d f x E v fΘ = −∑  (8) 

 
where Θ  is the sum of Euclidean distances between all corresponding points in the two 
models, MSM

ix  and FEM
ix  are the position of the thi  point in MSM and FEM, respectively.

sk  and fk  are the elastic coefficients of the structure spring and the flexion spring, 
respectively. d  is the damping coefficient, E  is the Young’s modulus, v  is the 
Poisson’s ratio, and extf  is the external force. 

According to the particle swarm optimization algorithm [18], the update equation of the 
velocity and position of the particles is presented as follows: 
 

1 2() ( ) () ( )i i i i iv w v c rand pbest x c rand gbest x= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  (9) 
 

i i ix x v= +  (10) 
 
where iv  and ix  are the velocity and position of the thi  particle, respectively, w  is the 
inertia weight coefficient, 1c  and 2c  are learning factors, ()rand  is a positive random 
number within [0,1] , ipbest  denotes the best position of the thi  particle from the 
beginning to current iteration step, and pbest  shows the global optimal position of the 
particle group. 

Finally, optimal solution is achieved by minimizing the fitness function according to Eqs. 
(9) and (10) such that all MSM

ix  in our MSM extremely approach the corresponding FEM
ix  in 

the reference model FEM with an appropriate set of parameters sk , fk  and d . 

2.3 Deformation Calculation 

According to Newton’s second law, the dynamics equation of the MSM can be described as: 
 

i i im a F=  (11) 
 

int
i i

i extF f f= +  (12) 
 
where im , ia , and iF  are the mass, acceleration and resultant force of point ix , 
respectively. int

if  represents an internal force acting on point ix , and i
extf  denotes an 

external force applied on point ix  by user. 
Since point ix  is connected with n  different points through spring units, the structure 

spring force s
if , the damping force d

if  and the flexion spring force f
if  acting on point 

ix  are computed as follows, respectively: 
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|| ||
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i ij ij ij ij
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f f k l l
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.

1 1
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d d d
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1 1 | (0) (0) | | |

n n
ij ijf f f

i ij ij
j j j i ij

d
f f k

x x d
θ

= =

= = ⋅ ⋅
−∑ ∑  (15) 

 
where n  is the number of points linked with point ix . Based on the Eqs. (13), (14) and 
(15), the internal force int

if  is computed as follows: 
 

int
i s d f

i i if f f f= + +  (16) 
 
Therefore, Eq. (11) is transformed as Eq. (17): 
 

2

2
d s f ii

i i i i ext
d xm f f f f
dt

+ + + =  (17) 

 
Since the displacement of point ix  is unknown, we introduce the velocity variable iv  and 
transform the second-order ordinary differential equation of Eq. (17) into a first-order 
ordinary differential equation, which is given as Eq. (18). 
 

2

2

i d s f
ext i i i

dxv
dt

dv d x
dt dt

f f f fdv
dt m

 =

 =

 − − −

=


 (18) 

 
A popular method to numerically solve the second-order ordinary differential equation is the 
Euler method [3]. We adopt the implicit Euler method to solve Eq. (17), as is shown in Eq. 
(19). 
 

( , )t t dtv dt f v t v −= ⋅ +  (19) 
 
where tv  and t dtv −  are current and previous velocity, respectively. dt  denotes the time 
step, and ( , )f v t  denotes the derivative of velocity. 

In summary, the steps of the deformation calculation for our MSM are shown as follows. 
First, initialize the mass im , position 0( )ix t  and velocity 0( )iv t  of points ix , 

1,2,...,i N= . Then, obtain the internal force int ( )if t  and external force ( )i
extf t  for each point 

at each time step using Eqs. (13), (14), (15) and (16). Finally, the corresponding velocity iv  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 4, April 2020                1747 

 

and position ix  can be iteratively updated in the next time step according to Eqs. (18) and 
(19). 

2.4 Volume Conservation Constraint 
The optimized MSM incorporating a flexion spring is only used to simulate the deformation 
on the surface; it cannot characterize the volumetric characteristic of the soft tissue. 
Therefore, we employ the PBD approach to implement volume conservation constraint based 
on tetrahedron elements inside the soft tissue so as to simulate the volumetric characteristic 
and incompressibility, i.e., maintain the volume of the deformable object. 

The PBD approach can be depicted in the following steps [19]: 
(i) Initialize the position ip  and velocity iv  of each vertex in the tetrahedron. 
(ii) Update the velocity and position of each vertex according to the external force and 

internal damping of the system at each time step t∆ , which is shown in Eqs. (20) and (21). 
 

( )new
i i ext i iv v t f w Damp v= + ∆ ⋅ ⋅ +  (20) 

 
new new
i i ip p t v= + ∆ ⋅  (21) 

 
where 1

i
i

w
m

= . 

(iii) Applying volume conservation constraint to the estimated position new
ip , the updated 

position sol
ip  can be obtained by Gauss-Seidel iteration. 

 
sol new
i ip p p= + ∆  (22) 

 
(iv) The final position final

ip  and velocity final
iv  of each vertex can be obtained. 

 
final sol

i ip p=  (23) 
 

final
final i i

i
p pv

t
−

=
∆

 (24) 

 
The interior of the soft tissue is represent by a set of P vertices and Q constraints, and the 
tetrahedron meshes are composed of these vertices. Let p be the vertices vector 

1 2 3 4[ , , , ]T T T T Tp p p p  of a tetrahedron. For step (iii), given p we want to find a correction factor 
p∆  such that ( ) 0C p p+ ∆ = , i.e., move p to a valid position which can satisfy the defined 

volume conservation constraint. 
For the correction factor of an individual point , 1,2,3,4ip i = , we have 

 

2

( ) ( )
| ( ) | i

j

i i p
j pj

C pp w C p
w C p

∆ = − ∇
∇∑

 (25) 

 
where ( )C p  and ( )pC p∇  denote the constraint function and its gradient, respectively. 

The volume conservation constraint of a single tetrahedron element can be described as: 
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1 2 3 4 2 1 3 1 4 1 0
1( , , , ) ( ) ( ) ( )
6

C p p p p p p p p p p V= − × − ⋅ − −  (26) 

 
where 0V  is the initial volume of a single tetrahedron element. 

 
Fig. 6. The structure of a tetrahedron element 

 
As shown in Fig. 6, the tetrahedron element inside the model will be deformed 

accordingly when the deformation is generated on the surface, resulting in the change of 
volume of the soft tissue. However, after we define the volume conservation constraint, the 
four vertices of the tetrahedron will perform corresponding adjustments to ensure that its 
volume remains unchanged, so that we can maintain the volume of the soft tissue. 

In order to obtain the correction factor ip∆ , the unknown parameter ( )
ip C p∇  in Eq. (25) 

need be calculated. Therefore, the corresponding gradients of Eq. (26) are deduced as 
follows: 

1 1 2 3 4 4 2 3 2
1( , , , ) ( ) ( )
6p C p p p p p p p p∇ = − × −  (27) 

 

2 1 2 3 4 3 1 4 1
1( , , , ) ( ) ( )
6p C p p p p p p p p∇ = − × −  (28) 

 

3 1 2 3 4 4 1 2 1
1( , , , ) ( ) ( )
6p C p p p p p p p p∇ = − × −  (29) 

 

4 1 2 3 4 2 1 3 1
1( , , , ) ( ) ( )
6p C p p p p p p p p∇ = − × −  (30) 

Now all the necessary parameters in Eq. (25) are obtained, we can calculate the correction 
factor by substituting Eqs. (27), (28), (29) and (30) into Eq. (25), thus the final position of 
the vertices satisfying the volume conservation constraint can be achieved. 

3. Experiment 

3.1 Experiment Environment 
We adopt the PHANTOM OMNI hand controller produced by Senable Technologies 
Company for force tactile interaction, and conduct experiments on the Windows 2010 
operating system with the VC++ 2017 and OpenGL. We realize the deformation simulation 
of the virtual liver on the following hardware platform: Intel Core i9-7920X CPU, 2.90 GHz, 
32GB RAM and NVIDA GeForce RTX 2080Ti which is shown in Fig. 7. 
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Fig. 7. Simulation environment 

 

To simulate our proposed soft tissue deformation model, we firstly obtain the medical 
liver image by CT scanning, then employ OpenGL to reconstruct the 3D geometric model of 
the image, and use illumination, texture mapping, etc. to render virtual surgery scene. Then 
the operators interact with the soft tissue by the PHANTOM OMNI device, and the force 
feedback information will feedback to them at the same time.  

3.2 Simulation Results 
To verify the validity of the proposed model and the realism of the soft tissue deformation, 
we regard the area around the action point of the external force as the deformation area, in 
which 40 points are selected and marked. The parameters in this experiment are set as 
follows: the number of surface points 1N =40, the mass of each point im =0.66, the elastic 
coefficient of each structure spring sk =0.035, the elastic coefficient of each flexion spring 

fk =0.32, and the damping coefficient d =0.004. We simulate the deformation of the virtual 
liver by using the virtual probe to apply the stress of 0.8N, 1.6N and 2.2N to the action point, 
as shown in Fig. 8. We also can observe that the deformation effect is continuous, realistic 
and meet the authenticity of the human-computer interaction. 
 

  
(a) before interaction (b) 0.8N 

  
(c) 1.6N (d) 2.2N 

Fig. 8. The deformation of virtual liver under different stress 
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3.3 Experimental Analysis 

3.3.1 Analysis of Shape Restoration 
In this paper, the deformation average error x , deformation standard deviation s  and shape 
restoration time et  are regarded as evaluation criterions to evaluate the shape restoration 
ability of the traditional MSM [8], volume MSM [3] and our MSM under the same external 
conditions. 
(1) Deformation Average Error 
The deformation average error x  is used to evaluate the accuracy of the shape restoration 
ability after the external force is withdrawn, as defined: 
 

1
0

1

1

| |
N

i i
i

x x
x

N

∞

=

−
=
∑

 (31) 

 
where 0

ix  is the original position of the thi  point, ix∞  is the position of the thi  point 
when the soft tissue deformation ends. 
(2) Deformation Standard Deviation 
The deformation standard deviation s  is employed to evaluate the stability of the shape 
restoration ability, as defined: 
 

1
0 2

1

1

(| | )

1

N

i i
i

x x x
s

N

∞

=

− −
=

−

∑
 (32) 

 
(3) Shape Restoration Time 
The shape restoration time et  is applied to describe the time when the virtual probe removes 
from the model surface until the shape restoration stops. 

We select and mark points on the traditional MSM and volume MSM surface as the action 
point of the external force and deformation area, respectively, and these points correspond 
with the ones on our MSM. Two different operation modes, i.e., pull mode and push mode, 
are adopted to the virtual soft tissue surface for simulation. The specific experimental 
process of evaluating the shape restoration ability for the traditional MSM, volume MSM 
and our MSM is shown as follows: Firstly, we use the virtual probe to the action point by 
same external force and record the original position of all marked points. Secondly, we 
remove the virtual probe and record the final position of all marked points when the 
deformation of virtual soft tissue ends. Finally, we calculate the deformation average error x , 
the deformation standard deviation s  and the shape restoration time et  for the three 
different models. The corresponding results are given in Table 1. 

Table 1 indicates that the deformation average error x , deformation standard deviation s , 
and shape restoration time et  of our proposed model are smaller than these of the traditional 
MSM and volume MSM in the pull mode and push mode, which means that our proposed 
MSM outperforms the traditional MSM and volume MSM. 
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Table 1. Comparisons of shape restoration ability 
Model Operation 

modes 
x  s  

et (ms) 

Traditional MSM [8] Pull 2.958 0.704 18.95 
Volume MSM [3] Pull 1.357 0.489 17.84 

Our MSM Pull 0.333 0.305 12.39 
Traditional MSM [8] Push 2.742 0.945 19.46 

Volume MSM [3] Push 1.367 0.588 17.31 
Our MSM Push 0.898 0.558 13.54 

3.3.2 Accuracy of the Model 
We choose the FEM [16] as the reference model, and then evaluate the accuracy and realism 
of our proposed model by comparing the deformation position between the proposed model 
and the FEM model. 

We select and mark the points on the FEM surface corresponding to the proposed model 
as the action point of the external force and deformation area, and use the virtual probe to the 
action point by the same external force. The speed of the probe is 1 cm/s. Besides, we record 
the deformation position of all marked points at 0.2s, 0.4s, 0.6s, 0.8s, 1.0s, 1.2s, 1.4s, 1.6s, 
1.8s, 2.0s, and calculate the average positional error, the maximal positional error and the 
minimal positional error of the corresponding points, as shown in Fig. 9. 
 

 
Fig. 9. Position errors of corresponding points under the same external force 

 
Fig. 9 shows that position errors between the corresponding points of the FEM and the 

proposed model under the same external force. Fig. 9 indicates the average error in 
corresponding positions between the FEM and the proposed model is less than 1mm, which 
is imperceptible by human eyes. Therefore, the deformation based on the proposed model 
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approximates to the reference model, which illustrates that our proposed model can 
effectively improve the accuracy and realism of the soft tissue deformation. 

3.3 Incompressibility of the Model 
In this paper, we compare the MSM with and without volume conservation constraint to 
evaluate the incompressibility of the soft tissue. Fig. 10 exhibits the curves of volume change 
based on these two different methods. The comparison shows that our proposed method has 
good volume conservation and more stable and closer to the initial volume value, which 
means our proposed model has good incompressibility. 
 

 
Fig. 10. The curves of volume change based on these two different methods 

 

3.3.4 Comprehensive Evaluation of the Simulation System 
To verify the interaction performance of the simulation system based on our proposed model, 
four evaluation indicators are selected, which are interactive naturalness, visual fluency, 
presence authenticity, and system stability. We make a comparison between our model and 
the traditional MSM [8], the PBD method [14] and the FEM [16], and grade the four models 
based on the above four indicators. 

Since the above four evaluation indicators cannot quantitatively provide the actual 
standard to measure the interaction performance of simulation system, and there is a fuzzy 
relationship between these indicators, we employ the fuzzy comprehensive evaluation 
method to grade the interaction performance of four models, which is described as the 
following three steps: 
(1) Determine fuzzy relationship matrix 
Determine the evaluation indicator set 1 2 3 4{ , , , }U U U U U=  and the evaluation grade set 

1 2 3 4 5{ , , , , }V V V V V V=  of the evaluation method, in which 1U , 2U , 3U  and 4U  represent 
the interactive naturalness, visual fluency, presence authenticity and system stability, 
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respectively; 1V , 2V , 3V , 4V  and 5V  indicate five grades of interaction performance of 
simulation system, i.e., excellent, good, general, bad and worse, respectively. 

We randomly select 27 doctors from First Affiliated Hospital of Nanjing Medical 
University, including 9 interns, 8 residents, 6 associate chief physicians, and 4 chief 
physicians. The doctors interact with the virtual liver through PHANTOM OMNI device, 
based on our proposed model, the traditional MSM, the PBD method and the FEM for 10 
minutes respectively, and then evaluate the four indicators after the interaction. Construct the 
membership of the evaluation indicator to evaluation grade based on evaluation results and 
determine the fuzzy relationship matrix R. The membership is calculated as follows: 
 

( 1,..., 4, 1,...,5)ij
ij

n
r i j

n
= = =  (

33) 
 

4 5( ) ×= ijR r  (34) 
 
where ijr  represents the membership of the thi  evaluation indicator to the thj  evaluation 

grade, ijn  represents the number of doctors who make thj  evaluation grade to the thi  
evaluation indicator, and n  represents the number of doctors. 
(2) Establish Comprehensive Evaluation Matrix 
Determine the weight of each evaluation indicator by the expert physician according to 
subjective weight. The subjective weights are 0.2, 0.25, 0.25 and 0.3, respectively, and 
constitute a weight matrix W. Then a comprehensive evaluation matrix B is established based 
on the weight matrix W and fuzzy relationship matrix R. The comprehensive evaluation 
matrix B is calculated as follows: 
 

1 2 3 4( , , , ) (0.2,0.25,0.25,0.3)= =W w w w w  (35) 
 

11 12 13 14 15

21 22 23 24 25
1 2 3 4 1 2 3 4 5

31 32 33 34 35

41 42 43 44 45

( , , , ) ( , , , , )

 
 
 = = =
 
 
 

o o

r r r r r
r r r r r

B W R w w w w b b b b b
r r r r r
r r r r r

 (36) 

 
where o denotes fuzzy operator, the weighted average operator ( , )⊕gM  is selected as 
fuzzy operator in this paper, as follows: 
 

4

1
min{1, }, 1,...,5j i ij

i
b w r j

=

= =∑  (37) 

 
(3) Comprehensive Evaluation Result 
We adopt the weighted average principle and normalizes the comprehensive evaluation 
matrix. Furthermore, we regard the numerical value {5,4,3,2,1} as the rank of evaluation 
grade, and then the rank is weighted to the corresponding evaluation indicator so that the 
final comprehensive evaluation score S can be achieved. The weighted average principle is 
computed as follows: 
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where β  is the weighting coefficient, and 1β =  is selected in this paper. 

According to the above steps, we can obtain the comprehensive evaluation score of the 
interaction performance of simulation system based on the four models, as shown in Table 
2. 

Table 2 shows that compared to the other three models, our proposed model achieved the 
best final comprehensive evaluation score. It indicates that our proposed model has a better 
interaction performance in terms of naturalness, fluency, authenticity, and stability, which 
provides a virtual environment with a sense of realism. 

 
Table 2. Comparison of the comprehensive interaction performance 

Evaluation grade Excellent Good General Bad Worse Score 
Proposed model 0.724 0.178 0.098 0 0 4.626 

Traditional MSM [8] 0.511 0.094 0.126 0.202 0.067 3.781 
The PBD method [14] 0.593 0.083 0.146 0.076 0.102 3.989 

The FEM [16] 0.576 0.109 0.126 0.143 0.046 4.026 

4. Conclusion 
In this paper, we proposed an optimized mass-spring model with shape restoration ability 
based on volume conservation to simulate the soft tissue of the virtual liver. The virtual liver 
deformation simulation system is built on PHANTOM OMNI force tactile interaction device 
with VC++ 2017 and OpenGL. Our system incorporates flexion spring into the MSM to 
restore its original shape in constructing the soft tissue surface model and adopts the particle 
swarm optimization algorithm to optimize the model parameters. Besides, the volume 
conservation constraint is considered into the PBD approach to maintain the volume of the 
virtual liver for constructing soft tissue volumetric model. Experimental results show that our 
proposed model provides a good shape restoration ability as well as incompressibility, 
enhances the accuracy and realism of deformation. 

Our proposed model simulates the linear elasticity of soft tissue. In future work, we will 
focus on other complex biological characteristics of soft tissue, such as non-linearity, 
viscoelasticity, etc. We believes that the deformation can be modeled much closer to the real 
liver under the same external force. 
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