• Title/Summary/Keyword: systems approach method

Search Result 3,708, Processing Time 0.032 seconds

Examination of the Co-evolution of Galaxies and their Central SMBHs at High Redshifts with Gravitational Lensing by QSO Host Galaxies

  • Taak, Yoon Chan;Im, Myungshin;Kang, Juhyeong;Kim, Jae-Woo;Kim, Dohyeong;Kim, Yongjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2015
  • The $M_{BH}-{\sigma}$ relation for galaxies is a stand-out illustration of the co-evolution of galaxies and their central supermassive black holes (SMBHs); however, how this co-evolution occurs and whether this relation holds for SMBHs of the early universe is still a matter of debate. In order to study this at higher redshifts, quasi-stellar objects (QSOs) are the best targets, due to their large sample size and effective $M_{BH}$ estimation. Nevertheless, it is difficult to examine properties of their host galaxies, simply due to the sheer brightness of the QSO itself. Here, we discuss a distinctive method in studying these QSO host galaxies, via gravitational lensing (GL). GL offers a unique approach in determining the mass of the lens object, in this case the host galaxy. QSOs from the SDSS quasar catalog were searched in the Hubble Space Telescope archives, and GL features around them were visually inspected. One such candidate is SDSS J1114-00; to increase its robustness as a GL system candidate, it was observed with the Inamori-Magellan Areal Camera & Spectrograph (IMACS) on the Magellan Baade Telescope at Las Campanas Observatory, to check whether the GL features have identical colors, meaning they are likely to originate from the same source. After confirmation of such GL systems, a sufficiently large sample will enable us to examine the $M_{BH}-{\sigma}$ relation at various redshifts, and in turn, investigate the co-evolution of SMBHs and their host galaxies.

  • PDF

Analysis of Improved Cyclostationary Spectrum Sensing with SLC Diversity over Composite Multipath Fading-Lognormal Shadowing Channels

  • Zhu, Ying;Liu, Jia;Feng, Zhiyong;Zhang, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.799-818
    • /
    • 2014
  • Spectrum sensing is a key technical challenge for cognitive radio (CR). It is well known that multi-cycle cyclostationarity (MC) detector is a powerful method for spectrum sensing. However, conventional MC detector is difficult to implement due to its high computational complexity. This paper pays attention to the fact that the computation complexity can be reduced by simplifying the test statistic of conventional MC detector. Based on this simplification process, an improved MC detector is proposed. Compared with the conventional one, the proposed detector has the low-computational complexity and sufficient-accuracy on sensing performance. Subsequently, the sensing performances are further investigated for the cases of Rayleigh, Nakagami-m, Rician, composite Rayleigh fading-lognormal shadowing and composite Nakagami fading-lognormal shadowing channels, respectively. Furthermore, the square-law combining (SLC) is introduced to improve the detection capability over fading-shadowing channels. The corresponding closed-form expressions of average detection probability are derived for each case by the moment generation function (MGF) approach. Finally, illustrative and analytical results show that the efficiency and reliability of proposed detector and the improvement on sensing performance by SLC over composite fading-shadowing channels.

Efficient Workload Distribution of Photomosaic Using OpenCL into a Heterogeneous Computing Environment (이기종 컴퓨팅 환경에서 OpenCL을 사용한 포토모자이크 응용의 효율적인 작업부하 분배)

  • Kim, Heegon;Sa, Jaewon;Choi, Dongwhee;Kim, Haelyeon;Lee, Sungju;Chung, Yongwha;Park, Daihee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.8
    • /
    • pp.245-252
    • /
    • 2015
  • Recently, parallel processing methods with accelerator have been introduced into a high performance computing and a mobile computing. The photomosaic application can be parallelized by using inherent data parallelism and accelerator. In this paper, we propose a way to distribute the workload of the photomosaic application into a CPU and GPU heterogeneous computing environment. That is, the photomosaic application is parallelized using both CPU and GPU resource with the asynchronous mode of OpenCL, and then the optimal workload distribution rate is estimated by measuring the execution time with CPU-only and GPU-only distribution rates. The proposed approach is simple but very effective, and can be applied to parallelize other applications on a CPU and GPU heterogeneous computing environment. Based on the experimental results, we confirm that the performance is improved by 141% into a heterogeneous computing environment with the optimal workload distribution compared with using GPU-only method.

Topological SLAM Based on Voronoi Diagram and Extended Kalman Filter

  • Choi, Chang-Hyuk;Song, Jae-Bok;Kim, Mun-Sang;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.174-179
    • /
    • 2003
  • Through the simultaneous localization and map building (SLAM) technique, a robot can create maps about its unknown environment while it continuously localizes its position. Grid maps and feature maps have been widely used for SLAM together with application of probability methods and POMDP (partially observed Markov decision process). But this approach based on grid maps suffers from enormous computational burden. Topological maps, however, have drawn more attention these days because they are compact, provide natural interfaces, and are easily applicable to path planning in comparison with grid maps. Some topological SLAM techniques like GVG (generalized Voronoi diagram) were introduced, but it enables the robot to decide only whether the current position is part of GVG branch or not in the GVG algorithm. In this paper, therefore, to overcome these problems, we present a method for updating a global topological map from the local topological maps. These local topological maps are created through a labeled Voronoi diagram algorithm from the local grid map built based on the sensor information at the current robot position. And the nodes of a local topological map can be utilized as the features of the environment because it is robust in light of visibility problem. The geometric information of the feature is applied to the extended Kalman filter and the SLAM in the indoor environment is accomplished. A series of simulations have been conducted using a two-wheeled mobile robot equipped with a laser scanner. It is shown that the proposed scheme can be applied relatively well.

  • PDF

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Categorizing Sub-Categories of Mobile Application Services using Network Analysis: A Case of Healthcare Applications (네트워크 분석을 이용한 애플리케이션 서비스 하위 카테고리 분류: 헬스케어 어플리케이션 중심으로)

  • Ha, Sohee;Geum, Youngjung
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.15-40
    • /
    • 2020
  • Due to the explosive growth of mobile application services, categorizing mobile application services is in need in practice from both customers' and developers' perspectives. Despite the fact, however, there have been limited studies regarding systematic categorization of mobile application services. In response, this study proposed a method for categorizing mobile application services, and suggested a service taxonomy based on the network clustering results. Total of 1,607 mobile healthcare services are collected through the Google Play store. The network analysis is conducted based on the similarity of descriptions in each application service. Modularity detection analysis is conducted to detects communities in the network, and service taxonomy is derived based on each cluster. This study is expected to provide a systematic approach to the service categorization, which is helpful to both customers who want to navigate mobile application service in a systematic manner and developers who desire to analyze the trend of mobile application services.

Study on Development of Framework of Company Classification in Information Security Perspective (정보보호 관점의 기업 유형 분류 프레임워크 개발에 관한 연구)

  • Kim, Hee-Ohl;Baek, Dong-Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.18-29
    • /
    • 2016
  • For most organizations, a security infrastructure to protect company's core information and their technology is becoming increasingly important. So various approaches to information security have been made but many security accidents are still taking place. In fact, for many Korean companies, information security is perceived as an expense, not an asset. In order to change this perception, it is very important to recognize the need for information security and to find a rational approach for information security. The purpose of this study is to present a framework for information security strategies of companies. The framework classifies companies into eight types so company can receive help in making decisions for the development of information security strategy depending on the type of company it belongs to. To develope measures to classify the types of companies, 12 information security professionals have done brainstorming, and based on previous studies, among the factors that have been demonstrated to be able to influence the information security of the enterprise, three factors have been selected. Delphi method was applied to 29 security experts in order to determine sub items for each factor, and then final items for evaluation was determined by verifying the content validity and reliability of the components through the SPSS analysis. Then, this study identified characteristics of each type of eight companies from a security perspective by utilizing the developed sub items, and summarized what kind of actual security accidents happened in the past.

Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway

  • Lorz, Laura Rojas;Kim, Donghyun;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.453-460
    • /
    • 2020
  • Background: BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive effects on allergic reactions in skin have not yet been described in detail, this study's main objective was to determine its efficacy in the treatment of atopic dermatitis (AD). Methods: High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both anti-DNP-IgE/DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187 alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent assay) and β-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells, we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38, and c-Jun N-terminal kinase proteins by immunoblotting. Results: BIOGF1K decreased the AD response by reducing both histamine and β-hexosaminidase release as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells. Conclusions: BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural approach for treating AD.

De-cloaking Malicious Activities in Smartphones Using HTTP Flow Mining

  • Su, Xin;Liu, Xuchong;Lin, Jiuchuang;He, Shiming;Fu, Zhangjie;Li, Wenjia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3230-3253
    • /
    • 2017
  • Android malware steals users' private information, and embedded unsafe advertisement (ad) libraries, which execute unsafe code causing damage to users. The majority of such traffic is HTTP and is mixed with other normal traffic, which makes the detection of malware and unsafe ad libraries a challenging problem. To address this problem, this work describes a novel HTTP traffic flow mining approach to detect and categorize Android malware and unsafe ad library. This work designed AndroCollector, which can automatically execute the Android application (app) and collect the network traffic traces. From these traces, this work extracts HTTP traffic features along three important dimensions: quantitative, timing, and semantic and use these features for characterizing malware and unsafe ad libraries. Based on these HTTP traffic features, this work describes a supervised classification scheme for detecting malware and unsafe ad libraries. In addition, to help network operators, this work describes a fine-grained categorization method by generating fingerprints from HTTP request methods for each malware family and unsafe ad libraries. This work evaluated the scheme using HTTP traffic traces collected from 10778 Android apps. The experimental results show that the scheme can detect malware with 97% accuracy and unsafe ad libraries with 95% accuracy when tested on the popular third-party Android markets.

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.