• Title/Summary/Keyword: system-level simulation

Search Result 2,156, Processing Time 0.173 seconds

On the Development of the Generic CFCS for Engineering Level Simulation of the Surface Ship (공학수준 수상함 지휘무장통제체계 범용 모델 개발방안 연구)

  • Jung, Young-Ran;Han, Woong-Gie;Kim, Cheol-Ho;Kim, Jae-Ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.380-387
    • /
    • 2011
  • In this paper, we considered the authoritative representation of Command and Fire Control System(CFCS) for the surface ship that was the engineering level model to develop system specifications and to analyze operational concepts on the concept design phase and to analyze military requirements, effectiveness and performance for the system. The engineering level model of CFCS can be used in simulation independently of the surface ship's type, and also it takes reuse, interoperability, and extension into consideration. The detailed sub-models, internal and external data interface, data flow among each sub-model, sensor and weapon models about the engineering level model of CFCS was defined. It was verified via engineering level simulations according to the V&V process.

Multi-level Modeling and Simulation for Sustainable Energy (대체 에너지의 다중레벨 모델링과 시뮬레이션)

  • van Duijsen, P.J.;Oh, Yong-Taek
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • Modeling and simulation for Green Energy depends largely on the type of system under investigation. The topics are very wide ranging from semiconductor physics (solar), electrical motor/generator (wind turbines), power electronics (grid connections) to typical control strategies. To correctly model these technologies requires a broad set of models and various simulation techniques. To further refine or detail the simulation the modeling has to be performed on a specific level, being system, circuit or component level. Combinations of several levels allows gradually improving the validity of the overall model against available parameters and model equations.

  • PDF

INCORPORATING CONTEXT LEVEL VARIABLES TO IMPROVE OPERATION ANALYSIS IN STEEL FABRICATION SHOPS

  • Amin Alvanchi;SangHyun Lee;Simaan M. AbouRizk
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1053-1059
    • /
    • 2009
  • Construction system modeling can enhance work performance by following the behaviors of a system. System behaviors may originate from physical aspects of a system, namely operation level variables, or from non-physical aspects of a system known as context level variables. However, construction system modelers usually focus on only one type of system variable (i.e., operation level or context level) which can lead to less accurate results. Hybrid modeling with System Dynamics (SD) and Discrete Event Simulation (DES) is one of the approaches that has been utilized to address this issue. In this research, an SD-DES hybrid model of a steel fabrication shop is developed, and the benefits of capturing context level variables together with operation level variables in the model are discussed.

  • PDF

The Optimal Inventory Level of the Maintenance Float to Achieve a Target Operational Availability of Korean-Made Helicopter (한국형 헬기의 목표 운용가용도 달성을 위한 정비대충장비 최적 재고수준 결정)

  • Lee, Sang-Jin;Kim, Seong-Won
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.81-93
    • /
    • 2007
  • Achieving a target operational availability is more economical and efficient than having many quantities of the weapon system, since the cost of weapon system becomes expensive. The intent of this study is twofold; first, we develop the simulation model to determine the optimal inventory level of the maintenance float while achieving a target operational availability of the Korean-made helicopter. The quantity decision model considers following factors such as a reliability. a turn around time(TAT). a protection level for inventory, and so on. Second, we analyze whether the existence of a lateral transshipment among bases and the reduction of TAT relate to an inventory level and the operational availability. The research result shows that both TAT and lateral transshipment have an effect on reducing the inventory level of the maintenance float and improving an operational availability.

Modeling and Simulation of Electric Vehicle Sharing System for Optimized Operation (전기차 카셰어링 시스템 최적화를 위한 모델링 및 시뮬레이션)

  • Seo, Yong Won
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.93-108
    • /
    • 2016
  • Electric vehicle car sharing (EV-sharing) system is noted as an eco-friendly system of transportation in global warming crisis and has been practically implemented in some cities around the world. However, methodologies to find the efficient operation conditions of EV-sharing systems reflecting a typical characteristic 'charging' have not been fully investigated yet. In the paper a generalized model has been developed to identify optimal level of infrastructure for EV-sharing system which provides the optimum operation efficiency under service level constraints. From the simulation analysis based on the developed model the relationships between the operational variables to describe EV-sharing system have been identified and optimal capacity to maximize the operational efficiency have been found. From the analysis of simulation results it has been found that increases in the number of vehicles and chargers improve the service level until certain value beyond which increasing rate and the efficiency have been reduced. From the cost-revenue analysis the optimal numbers of vehicles and chargers have been identified which maximizes the annual operational profit.

Validation of the Control Logic for Automated Material Handling System Using an Object-Oriented Design and Simulation Method (객체지향 설계 및 시뮬레이션을 이용한 자동 물류 핸들링 시스템의 제어 로직 검증)

  • Han Kwan-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.834-841
    • /
    • 2006
  • Recently, many enterprises are installing AMSs(Automated Manufacturing Systems) for their competitive advantages. As the level of automation increases, proper design and validation of control logic is a imperative task for the successful operation of AMSs. However, current discrete event simulation methods mainly focus on the performance evaluation. As a result, they lack the modeling capabilities for the detail logic of automated manufacturing system controller. Proposed in this paper is a method of validation of the controller logic for automated material handling system using an object-oriented design and simulation. Using this method, FA engineers can validate the controller logic easily in earlier stage of system design, so they can reduce the time for correcting the logic errors and enhance the productivity of control program development Generated simulation model can also be used as a communication tool among FA engineers who have different experiences and disciplines.

Support vector ensemble for incipient fault diagnosis in nuclear plant components

  • Ayodeji, Abiodun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1306-1313
    • /
    • 2018
  • The randomness and incipient nature of certain faults in reactor systems warrant a robust and dynamic detection mechanism. Existing models and methods for fault diagnosis using different mathematical/statistical inferences lack incipient and novel faults detection capability. To this end, we propose a fault diagnosis method that utilizes the flexibility of data-driven Support Vector Machine (SVM) for component-level fault diagnosis. The technique integrates separately-built, separately-trained, specialized SVM modules capable of component-level fault diagnosis into a coherent intelligent system, with each SVM module monitoring sub-units of the reactor coolant system. To evaluate the model, marginal faults selected from the failure mode and effect analysis (FMEA) are simulated in the steam generator and pressure boundary of the Chinese CNP300 PWR (Qinshan I NPP) reactor coolant system, using a best-estimate thermal-hydraulic code, RELAP5/SCDAP Mod4.0. Multiclass SVM model is trained with component level parameters that represent the steady state and selected faults in the components. For optimization purposes, we considered and compared the performances of different multiclass models in MATLAB, using different coding matrices, as well as different kernel functions on the representative data derived from the simulation of Qinshan I NPP. An optimum predictive model - the Error Correcting Output Code (ECOC) with TenaryComplete coding matrix - was obtained from experiments, and utilized to diagnose the incipient faults. Some of the important diagnostic results and heuristic model evaluation methods are presented in this paper.

A Design and Application of HLA-Based Air Defense Simulation Framework (HLA 기반 대공유도무기 시뮬레이션 프레임워크 설계 및 사례적용)

  • Cho, Byung-Gyu;Kim, Sae-Hwan;Youn, Cheong
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.709-718
    • /
    • 2005
  • To correspond with the unpredictable future tactical environment, Ive expanded the application of M&S(Modeling & Simulation) that is more scientific and more economic in a field of weapon system development process. This paper describes experience in development of ADSF(Air Defense Simulation Framework) that supports not only HLA(High Level Architecture) which is an international standard in M&S but also TCP/IP as well as real-time distributed simulation. ADSF has been applied to the M-SAM(Medium Range Surface to Air Missile) System Simulator, and satisfying test results through GPS(Global Positioning System) timer has been acquired. As a result, an ADSF which is able to support HLA and TCP/IP as veil as precise real-time simulation has been successfully made. we were in need or a real-time simulation engine to support Air Defense System Simulators that were consisted of several subsystems.

Methods and Sample Size Effect Evaluation for Wafer Level Statistical Bin Limits Determination with Poisson Distributions (포아송 분포를 가정한 Wafer 수준 Statistical Bin Limits 결정방법과 표본크기 효과에 대한 평가)

  • Park, Sung-Min;Kim, Young-Sig
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In a modern semiconductor device manufacturing industry, statistical bin limits on wafer level test bin data are used for minimizing value added to defective product as well as protecting end customers from potential quality and reliability excursion. Most wafer level test bin data show skewed distributions. By Monte Carlo simulation, this paper evaluates methods and sample size effect regarding determination of statistical bin limits. In the simulation, it is assumed that wafer level test bin data follow the Poisson distribution. Hence, typical shapes of the data distribution can be specified in terms of the distribution's parameter. This study examines three different methods; 1) percentile based methodology; 2) data transformation; and 3) Poisson model fitting. The mean square error is adopted as a performance measure for each simulation scenario. Then, a case study is presented. Results show that the percentile and transformation based methods give more stable statistical bin limits associated with the real dataset. However, with highly skewed distributions, the transformation based method should be used with caution in determining statistical bin limits. When the data are well fitted to a certain probability distribution, the model fitting approach can be used in the determination. As for the sample size effect, the mean square error seems to reduce exponentially according to the sample size.

Analysis on Causal Factors Affecting the Stress of Pilots by the Environmental Differences between Live-Virtual Simulation (Live-Virtual 시뮬레이션 환경차이에 따른 조종사 스트레스 유발요인 분석)

  • Kim, Jinju;Kim, Sungho;Seol, Hyeonju;Jee, Cheolkyu;Hong, Youngseok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Recently, Live-Virtual-Constructive (L-V-C) integrate training system has proposed as a solution for the problems such as limitation of training areas, increase of mission complexity, rise in oil prices. In order to integrate each training system into the one effectively, we should solve the issue about stress of pilots by the environmental differences between Live and Virtual simulation which could be occurred when each system is connected together. Although it was already examined in previous study that the psychological effects on pilots was occurred by the environmental differences between actual and simulated flights, the study did not include what the causal factors affecting psychological effects are. The aim of this study is to examine which environmental factors that cause pilots' psychological effects. This study analyzed the biochemical stress hormone, cortisol to measure the pilots' psychological effects and cortisol was measured using Enzyme-linked immunoassay (EIA). A total of 40 pilots participated in the experiment to compare the differences in pilots' cortisol response among live simulation, virtual simulation, and the virtual simulation applying three environmental factors (gravity force, noise, and equipment) respectively. As a result, there were significant differences in cortisol level when applied the gravity force and equipment factors to the virtual simulation, while there was no significant difference in the case of the noise factor. The results from this study can be used as a basis for the future research on how to make L-V system by providing minimum linkage errors and design the virtual simulator that can reduce the differences in the pilots' psychological effects.