• Title/Summary/Keyword: system-integrated modular advanced reactor

Search Result 44, Processing Time 0.027 seconds

Development of a computer code for thermal-hydraulic design and analysis of helically coiled tube once-through steam generator

  • Zhang, Yaoli;Wang, Duo;Lin, Jianshu;Hao, Junwei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1388-1395
    • /
    • 2017
  • The Helically coiled tube Once-Through Steam Generator (H-OTSG) is a key piece of equipment for compact small reactors. The present study developed and verified a thermal-hydraulic design and performance analysis computer code for a countercurrent H-OTSG installed in a small pressurized water reactor. The H-OTSG is represented by one characteristic tube in the model. The secondary side of the H-OTSG is divided into single-phase liquid region, nucleate boiling region, postdryout region, and single-phase vapor region. Different heat transfer correlations and pressure drop correlations are reviewed and applied. To benchmark the developed physical models and the computer code, H-OTSGs developed in Marine Reactor X and System-integrated Modular Advanced ReacTor are simulated by the code, and the results are compared with the design data. The overall characteristics of heat transfer area, temperature distributions, and pressure drops calculated by the code showed general agreement with the published data. The thermal-hydraulic characteristics of a typical countercurrent H-OTSG are analyzed. It is demonstrated that the code can be utilized for design and performance analysis of an H-OTSG.

The Design, Fabrication, and Characteristic Experiment for Control Rod Position Indicator Using Reed Switch in System-Integrated Modular Advanced Reactor (리드스위치를 이용한 일체형원자로용 제어봉 위치지시기 설계 제작 및 특성해석)

  • Hur, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.452-461
    • /
    • 2003
  • The reliability and accuracy of the information on control rod position are very important to the reactor safety and the design of the core protection system. A survey on the RSPT(Reed Switch Position Transmitter) type control rod position indicator system and its actual implementation in the existing nuclear power plants in Korea was performed first. The control rod position indicator having the high performance for SMART was developed on the basis of RSPT technology identified through the survey. The arrangement of permanent magnet and reed switches is the most important procedure in the design of control rod position indicator. The hysteresis of reed switches is one of the important factors in a repeat accuracy of control rod position indicator as well. This paper investigates efficiency of the magnetic flux concentrator and the hysteresis using FEM and verified differences in physicals characteristics by comparing the results of FEM and those of the experiment. As a result, it is shown that the characteristics of prototype control rod position indicator have a good agreement with the results of FEM.

A Study on the Temperature Characteristics of Main Coolant Pump for System-integrated Modular Advanced Reactor (SMART 원자로용 냉각재 순환펌프의 온도특성에 관한 연구)

  • Gu, Dae-Hyeon;Bang, Deok-Je;Gang, Do-Hyeon;Kim, Jong-In;Jo, Yun-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.320-326
    • /
    • 2000
  • The canned motor of 3-phase induction is used for main coolant pump(MCP). The type of motor is canned-motor that stator and rotor are welded by sealed can. So, cooling water flows in the air gap of the canned motor as an independent cycling cooling system from the air gap to yoke of the motor to prevent high temperature of stator can and to lubricate bearing. Heat exchange is occurred between cooling water in the air gap and cooling water from the exterior pump to prevent rising of temperature in the motor. I has to analyze the characteristics of can exactly because the loss and the heat in the can are very important to design MCP. Therefore, thermal analysis is studied considering the effect of eddy-current los induced in the can.

  • PDF

3D-based equivalent model of SMART control rod drive mechanism using dynamic condensation method

  • Ahn, Kwanghyun;Lee, Kang-Heon;Lee, Jae-Seon;Chang, Seongmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1109-1114
    • /
    • 2022
  • The SMART (System-integrated Modular Advanced ReacTor) is an integral-type small modular reactor developed by KAERI (Korea Atomic Energy Research Institute). This paper discusses the feasibility and applicability of a 3D-based equivalent model using dynamic condensation method for seismic analysis of a SMART control rod drive mechanism. The equivalent model is utilized for complicated seismic analysis during the design of the SMART. While the 1D-based beam-mass equivalent model is widely used in the nuclear industry for its calculation efficiency, the 3D-based equivalent model is suggested for the seismic analysis of SMART to enhance the analysis accuracy of the 1D-based equivalent model while maintaining its analysis efficiency. To verify the suggested model, acceleration response spectra from seismic analysis based on the 3D-based equivalent model are compared to those from the 1D-based beam-mass equivalent model and experiments. The accuracy and efficiency of the dynamic condensation method are investigated by comparison to analysis results based on the conventional modeling methodology used for seismic analysis.

Development of a Preliminary PIRT (Phenomena Identification and Ranking Table) of Thermal-Hydraulic Phenomena for SMART

  • Chung, Bub-Dong;Lee, Won-Jae;Kim, Hee-Cheol;Song, Jin-Ho;Sim, Suk-Ku
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.639-644
    • /
    • 1997
  • The work reported in this paper identifies the thermal-hydraulic phenomena that are expected to occur during a number of key transients in SMART(System-integrated Modular Advanced ReacTor) which is under development at KAERI. The result of this effort is based on the current design concept of SMART integral reactor. Although the design is still evolving, the preliminary phenomena Identification and Ranking Table(PIRT) has been developed based on the experts' knowledge and experience. The preliminary PIRT has been developed by consensus of KAERI expert panelists and AHP(Analytical Hierarchy Process). Preliminary PIRT developed in this paper is intended to be used to identify and integrate development areas of further experimental tests needed, thermal hydraulic models and correlations and code improvements for the safety analysis of the SMART.

  • PDF

Design and Analysis of MCP for SMART(System-integrated Modular Advanced Reactor) (일체형 원자로 냉각재 순환펌프의 전동기 설계 및 해석)

  • Koo, Dae-Hyun;Kang, Do-Hyun;Park, Jong-Woo;Kim, Jong-Mu;Kim, Jong-In;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.228-231
    • /
    • 1998
  • Canned-motor of 3-phase induction is to be used for MCP. Its design and analysis are performed considering the effect of eddy-current loss induced in the can. The effect of inverter of canned-motor is also considered as it is controlled by VVVF inverter for two operating points.

  • PDF

Experimental Study on Design Verification of New Concept for Integral Reactor Safety System (일체형원자로의 신개념 안전계통 실증을 위한 실험적 연구)

  • Chung, Moon-Ki;Choi, Ki-Yong;Park, Hyun-Sik;Cho, Seok;Park, Choon-Kyung;Lee, Sung-Jae;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2053-2058
    • /
    • 2004
  • The pressurized light water cooled, medium power (330 MWt) SMART (System-integrated Modular Advanced ReacTor) has been under development at KAERI for a dual purpose : seawater desalination and electricity generation. The SMART design verification phase was followed to conduct various separate effects tests and comprehensive integral effect tests. The high temperature / high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents) has been constructed to simulate the SMART-P (the one fifth scaled pilot plant) by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems. Heat transfer characteristics and natural circulation performance of the PRHRS (Passive Residual Heat Removal System) of SMART-P were also investigated using the VISTA facility. The coolant flows steadily in the natural circulation loop which is composed of the steam generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant.

  • PDF

Design of Uni-directional Optical Communication Structure Satisfying Defense-In-Depth Characteristics against Cyber Attack (사이버공격에 대비한 심층방호 특성을 만족하는 단방향 광통신 구조 설계)

  • Jeong, Kwang Il;Lee, Joon Ku;Park, Geun Ok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.12
    • /
    • pp.561-568
    • /
    • 2013
  • Instrumentation and control system in nuclear power plant performs protecting, controling and monitoring safety operation of Nuclear Power Plant. As cyber attack to the control equipment of instrumentation and control system can cause reactor shutdown and radiation release, it is required to design the instrumentation and control system considering cyber security in accordance with regulatory guides and industrial standards. In this paper, we proposed a design method of uni-directional communication structure which is required in the design of defense-in-depth model according to regulatory guides and industrial standards and we implemented a communication board with the proposed method. This communication board was tested in various test environments and test items and we concluded it can provide uni-directional communication structure required to design of defense-in-depth model against cyber attack by analyzing the results. The proposed method and implemented communication board were applied in the design of SMART (system-integrated modular advanced reactor) I&C (instrumentation and control) systems.

Frictional Characteristics of Silicon Graphite Lubricated with Water at High Pressure and High Temperature (고온 고압에서 물로 윤활되는 실리콘그라파이트 재질의 마찰 특성에 관한 연구)

  • Lee, Jae-Seon;Kim, Eun-Hyun;Park, Jin-Seok;Kim, Jong-In
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.151-156
    • /
    • 2001
  • Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss ana wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics.

  • PDF

A Study on the Design and the Analysis of Canned-motor for SMART(System integrated Modular Advanced Reactor) using the Equivalent Circuit with Consideration of the Can-loss (Can손실이 고려된 등가회로도를 이용한 SMART용 Canned-motor 설계 및 해석에 관한 연구)

  • Gu, Dae-Hyeon;Gang, Do-Hyeon;Park, Jeong-U;Kim, Jong-In;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.483-493
    • /
    • 2001
  • The 3-phase induction is used for the MCP(main coolant pump) and the pure water is used for lubrication of bearing because of the difficulty of repair. Therefore the type of motor is the canned-motor that is welded by sealed can to prevent the stator and rotor from the lubricating water. A lot of Eddy currents are produced in the can because of the conductivity of material. And these eddy currents in the can are the most important cause that decrease the efficiency of induction motor. Therefore we have to find the method to decrease these eddy currents in the can for the improvement of efficiency of motor. In this paper, we proposed the method of design and analysis of canned-motor using equivalent circuit with consideration of can loss for the improvement of efficiency of motor.

  • PDF