• Title/Summary/Keyword: system uncertainty

Search Result 2,442, Processing Time 0.03 seconds

Robust controller design for RTP system using structured uncertainty approach (구조적 불확실성 접근을 이용한 RTP 시스템의 견실제어기 설계)

  • Lee, Sang-Kyung;Kim, Jong-Hae;Kim, Hae-Kun;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.667-675
    • /
    • 1999
  • In this paper, we propose a robust controller design of RTP(Rapid Thermal Processing) system using structured uncertainty approach. Using the weighted mixed sensitivity function, we solve the robust stability problem against disturbance and temperature variation, and design a $\mu$ controller using curve fitting method against structured uncertainty. Also the reduction method should be requried because of the difficulty of implementaion with the obtained high order controller. We dal with robust stability and performance of RTP system by the design of $\mu$ controller for original model and Schur balanced reduced model. Finally the simulation results are proposed to show the validity of the proposed method.

  • PDF

A Study on the Fault Detection of an Integrated Servo Actuator (통합 서보 액츄에이터의 고장 감지시스템 연구)

  • 신기현;임광호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.306-312
    • /
    • 1996
  • The performance of the failure detection algorithm may be greatly influenced by the model uncertainty. It is very important to design a robust failure detection system to the model uncertainty. In this paper, a design procedure to generate failure detection algorithm is proposed. The design procedure suggested is based on the concept of the‘threshold selector[1]’. The H$\infty$ control algorithm is used to derive a threshold selector which is robust to the model uncertainty, The threshold selector derived can be used to develop a failure detection system together with the weighted cumulative sum algorithm[3]. Computer simulation study showed that the failure detection system designed for an ISA(Integrated Servo Actuator) system by using the proposed method is robust to the model uncertainty.

  • PDF

An Uncertainty Analysis of a Compensation Method for the Positioning Error of Three-DOF Manipulator (3 자유도 위치 결정 기구의 위치 오차 평가 및 보정법에 대한 불확도 분석)

  • Park Jae-Jun;Eom Hyung-Wook;Cho Nahm-Gyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.51-58
    • /
    • 2006
  • This study analyzes the uncertainty of the compensation method of a sensing error of three-DOF measuring system. This compensation method utilizes a reference coordinate system using a three point by moving a position of an endpoint of a three-DOF manipulator. The coordinate transformation between the three-DOF manipulator and the measuring system is identified by the reference coordinate system. According to the concept of this compensation method, each positioning error at any position of the end-point of the manipulator is derived. Uncertainty analyses of the compensation values on the basis of sensitivity analysis and Monte Carlo simulation are used to investigate a feasibility and effectiveness of the compensation method.

Uncertainty Characteristics of Diverter for Flowmeter Calibration System (액체용 유량계 교정시스템의 Diverter 불확도 특성 연구)

  • Lee, Dong-Keun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • The diverter system is a key component in achieving a high accuracy liquid flow rate standard using a static gravimetric system with a flying start and stop method. The diverter is a moving device used to direct flow alternately along its normal course(by pass) or towards the weighing tank. The time needed for collection into the weighing tank is measured using a timer. So it is important to the diversion period is sufficiently fast and triggering point of timer which is determined the filling time. On this studies show that uncertainty of diverter system for changing diversion speed and triggering point was estimated in accordance with Guide to The Expression of Uncertainty in Measurement(ISO).

An Uncertainty Study: Focused on the Use of the Edunet System (이용자 불확실성에 관한 연구 - 에듀넷 시스템 활용을 중심으로 -)

  • Kim, Yang-woo
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.50 no.1
    • /
    • pp.71-99
    • /
    • 2016
  • This study investigated users' information seeking behaviors associated with their perceptions of uncertainty. For this study, the data was collected from an user group, who conducted information searches in the field of history, using the KERIS Edunet system and it was analyzed through the comparative analysis of the grounded theory. The results presented users' uncertainty in the following stages: the identification of information needs, the selection of an information system, the selection of search terms, the actual use of the system, and the evaluation of search results. Major implications pertain to the enhancement of the Edunet system and related services. The former includes the improvement of the retrieval mechanisms related to the search and display interfaces. The latter emphasizes the consideration of the origin of uncertainty in the process of the services. In other words, the study suggested to consider the inadequacy of the system functions, the insufficiency of search experiences and the lack of such abilities of particular users.

Development of a Candidate Equipment for Ozone SRP and its Uncertainty Evaluation (오존 SRP의 제작과 측정 불확도 평가)

  • 정규백;우진춘;이진홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.4
    • /
    • pp.313-319
    • /
    • 2001
  • The development of ozone SRP (Standard Reference Photometer) designated as a G-7 project by the Korean Ministry of Environment began 1997 and is now nearly completed. With the completion of the ozone SRP we will not only acquire a qualification to participate in the international ozone calibration system but also enhance calibration credibility of ozone similarly to that of other ambient air pollution monitors. As the ozone SRP uses highly cleaned blank air that can be distinguished from general ozone analyzer, it is possible to reduce errors associated with the determination of ozone via elongation of the absorption length as long as 1 meter In addition, gas chopping method hat been adopted to cut down interference of other substances and time drift. Furthermore, the system has also been modified to minimize the strayed ultra-violet noise along the light path. In this paper, a new method for uncertainty evaluation has been introduced, which is guided by the ISO (International Standard Organization) GUM (Guide to the Expression of Uncertainty in Measurement) through assessments of the uncertainty type B (that was impossible to estimate before) as well as the uncertainty type A (based on statistics).

  • PDF

Hot Leg Temperature Uncertainty due to Thermal Stratification

  • Jang, Ho-Cheol;Ju, Kyong-In;Kim, Young-Bo;Sul, Young-Sil;Cheong, Jong-Sik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.29-35
    • /
    • 1996
  • For the Reactor Coolant System(RCS) flow rate measurement by the secondary calorimetric heat balance method, the coolant temperature of the hot leg is needed. Several Resistance Temperature Detectors(RTD) are installed in the hot leg to measure the temperature, but the average value of RTDs does not correctly represent the energy-averaged(bulk) temperature because of the thermal stratification phenomenon. Therefore some correction is introduced to predict the bulk temperature, but the correction inevitably contains uncertainty because the stratification is not defined well quantitatively yet. Therefore a large uncertainty for the correction has been used for the conservative estimation. But unrealistically large uncertainty causes degradation of the measurement method and yields difficulty to meet the acceptance criterion in start-up flow measurement test. In this paper, an analytical estimation is made on the correction and the related uncertainty using the measured hot leg velocity profile of System 80 reactor flow model test and the measured temperatures of YGN 3&4 and PVNGS 1&2 start-up tests. The results reveal that the magnitude of the correction uncertainty is much smaller than that used in the previous design. Therefore, the confidence on the flow rate measurement method can be improved and the difficulty in start-up flow measurement test can be lessened if the smaller correction uncertainty obtained through this estimation is applied.

  • PDF

IMPLEMENTATION OF DATA ASSIMILATION METHODOLOGY FOR PHYSICAL MODEL UNCERTAINTY EVALUATION USING POST-CHF EXPERIMENTAL DATA

  • Heo, Jaeseok;Lee, Seung-Wook;Kim, Kyung Doo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.619-632
    • /
    • 2014
  • The Best Estimate Plus Uncertainty (BEPU) method has been widely used to evaluate the uncertainty of a best-estimate thermal hydraulic system code against a figure of merit. This uncertainty is typically evaluated based on the physical model's uncertainties determined by expert judgment. This paper introduces the application of data assimilation methodology to determine the uncertainty bands of the physical models, e.g., the mean value and standard deviation of the parameters, based upon the statistical approach rather than expert judgment. Data assimilation suggests a mathematical methodology for the best estimate bias and the uncertainties of the physical models which optimize the system response following the calibration of model parameters and responses. The mathematical approaches include deterministic and probabilistic methods of data assimilation to solve both linear and nonlinear problems with the a posteriori distribution of parameters derived based on Bayes' theorem. The inverse problem was solved analytically to obtain the mean value and standard deviation of the parameters assuming Gaussian distributions for the parameters and responses, and a sampling method was utilized to illustrate the non-Gaussian a posteriori distributions of parameters. SPACE is used to demonstrate the data assimilation method by determining the bias and the uncertainty bands of the physical models employing Bennett's heated tube test data and Becker's post critical heat flux experimental data. Based on the results of the data assimilation process, the major sources of the modeling uncertainties were identified for further model development.

Evaluation of MUF uncertainty based on GUM method for benchmark bulk handling facility

  • Hyun Cheol Lee;Jung Youn Choi;Hana Seo;Hyun Ju Kim;Yewon Kim;Haneol Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2937-2947
    • /
    • 2024
  • The Republic of Korea is performing independent national inspections under the IAEA's State System of Accounting for and Control (SSAC), and developing an evaluation methodology for the material unaccounted for (MUF) to reinforce capabilities with the purpose of assessment for the accounting system of the facility handling bulk nuclear materials. In relation to this, a new approach for MUF evaluation was proposed in this study based on the guide to the expression of uncertainty in measurement (GUM). Both the conventional MUF evaluation method and the GUM method were applied to a hypothetical list of inventory items including material balance. Considering the ease of uncertainty propagation according to the GUM, it was assumed that independent uncertainty factors correspond to random factors, while correlated uncertainty factors correspond to systematic factors. The total MUF uncertainties were similar for both methods; however, it was verified that some uncertainties were affected by the measurement procedure in the GUM method. Furthermore, the GUM method was found to be more conducive to conducting a factor analysis for the MUF uncertainty. It was therefore concluded that application of the GUM approach could be beneficial in cases of national safeguard inspections where factor analysis is required for MUF assessment.

Uncertainty Analysis of Test Method for Heat Recovery Ventilators (폐열회수 환기유닛의 인증시험 방법에 대한 오차분석)

  • Han, H.;Choo, Youn-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.423-428
    • /
    • 2006
  • Twenty nine HRV models have been tested for last two years since the attestation system has been started by KARSE. It is the objective of the present study to analyze the performance test results. Uncertainty analysis has been conducted to find the effects of measured variables on the uncertainties of test results. The uncertainty of enthalpy is found to be affected by the uncertainty of wet bulb temperature significantly, but not by that of dry bulb temperature for the present range of parameters. The uncertainty of effective enthalpy efficiency is calculated to be 6%P for the cooling condition, and 3%P for the heating condition approximately. In order to reduce the uncertainty of the test results, the uncertainty of wet bulb temperature should be minimized and the indoor/outdoor test conditions should be modified so as to increase the enthalpy difference.

  • PDF