• Title/Summary/Keyword: system theory

Search Result 7,727, Processing Time 0.034 seconds

A Preliminary Study on Development of Family-Empowering Program In Healthy Family-Support Center (건강가정지원센터의 가정 건강성 강화 프로그램 개발을 위한 기초 연구)

  • Jeong, Young-Keum;Jeong, Jee-Young;Cho, Seung-Eun
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.2
    • /
    • pp.39-50
    • /
    • 2008
  • The purpose of this study is to constitute the background theory and framework for developing the family-empowering program of Healthy Family-Support Center(HFSC). For this purpose, first, this study emphasizes that the development of integrated and differentiated program for HFSC is needed. Second, this study shows the theoretical background including ecological system theory, family system analysis theory, and family life coaching process. Third, assessment and evaluation system and subsystems are suggested as a basic frame for developing family life diagnosis tool. This system is based on the comparative analysis about the studies relating family life planning and case management. Fourth, the process of family empowering program is suggested to accomplish the family needs and goals. This process include the assessment, family life coaching for problem solving and/or family life planning, and following education and counselling. Last, this study shows how this program is related to other programs of HFSC. Family members can participate various programs of this center for preventing or solving the problem on the basis of evaluation results. Family-empowering program for making family healthy can be a representative and integrating program for this center.

Design of Force Control System for a Hydraulic Road Simulator Using Quantitative Feedback Theory (정량적 피드백 이론을 이용한 유압 로드 시뮬레이터에 관한 힘 제어계 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.11
    • /
    • pp.1069-1076
    • /
    • 2007
  • This paper presents the road simulator control technology for reproducing the road input signal to implement the real road data. The simulator consists of the hydraulic pump, servo valve, hydraulic actuator and its control equipment. The QFT(Quantitative Feedback Theory) is utilized to control the simulator effectively. The control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) for a parametric uncertain model. A force controller is designed to communicate the control signal between simulator and digital controller. Tracking specification is satisfied with upper and lower bound tolerances on the steep response of the system to the reference signal. The efficacy of the QFT force controller is verified through the numerical simulation, in which combined dynamics and actuation of the hydraulic servo system are tested. The simulation results show that the proposed control technique works well under uncertain hydraulic plant system. The conventional software (Labview) is used to make up for the real controller in the real-time basis, and the experimental works show that the proposed algorithm works well for a single road simulator.

CALIBRATION OF STELLAR PARAMETERS OF 85 PEG SYSTEM

  • Bach, Kiehunn;Kim, Yong-Cheol;Demarque, Pierre
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • We have investigated the evolutionary status of 85 Peg within the framework of standard evolutionary theory. 85 Peg has been known to be a visual and spectroscopic binary system in the solar neighborhood. In spite of the accurate information of the total mass (${\sim}1.5M_{\odot}$) and the distance (${\sim}12pc$) from the HIPPARCOS parallax, it has been undetermined an individual mass, therefore the evolved status of the system. Moreover, the coupled uncertainties of chemical composition and age, make matters worse in predicting an evolutionary status of the system. Nevertheless, we computed the various possible models for 85 Peg, and then calibrated stellar parameters by adjusting to the recent observational data. Our modelling computation has included recently updated input physics and stellar theory such as opacity, equation of state, and chemical diffusion. Through a statistical assessment, we have derived a confident parameter set as the best solution which minimized $X^{2}$ within the observational error domain. Most of all, we found that 85 Peg is not a binary system but a triple system with an unseen companion 85 Peg $B_{b}\;{\sim}0.16M_{\odot}$. The aim of the present paper is (1) to provide a complete modelling of the stellar system based on the evolutionary theory, and (2) to constrain the physical dimensions such as mass, metallicity and age.

The Embedding Synchronization Method in the Complex System (복잡계에서의 임베딩 구동 동기화 기법)

  • Bae, Young-Chul;Kim, Yi-Gon;Kim, Chen-Suk;Koo, Young-Duk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • The complex system synchronization methods improve based on synchronization theory; however, due to deeper level of complexity within complex system compared to that of chaos system, it is difficult to synchronize complex signals from complex system. In this paper, we proposed coupled-synchronization theory in the n-double scroll circuit and new embedding driven-synchronization theory, a method of accomplishing synchronization with only one parameter out of may parameters, in hyper-chaos circuit to apply synchronization in the complex system. By applying proposed synchronization method using computer simulation, we confirmed the accomplishment of superior synchronization in complex system.

The Functional Relationship of C2 System Enhancement and Combat Effectiveness Using Schutzer's C2 Theory and Measures of Effectiveness (Schutzer의 C2 효과측정 모델을 이용한 지휘통제체계 강화와 전투효과의 함수적 상관관계)

  • Lee, Jae-Yeong;Shin, Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2004
  • The enhancement of C2(Command and Control) system will increase effectiveness of individual force power in combat engagement. Especially, available time of a given engaging force and information accuracy are the most influencing factors to increment of combat effectiveness after enhancement of C2 system. In this paper, by using Schutzer's C2 Theory and Measures of Effectiveness, we developed several analytical functions representing the relationships between C2 system enhancement and two most critical variables, available time and information accuracy. As a result of functional analysis, we showed C2 system enhancement and combat effectiveness have positive and non-linear relationship. The higher level of C2 system be required, the better combat effectiveness of force power can be obtained. Additionally, we proposed a proposition that the combat effectiveness of C2 system is more sensitive to available time than to information accuracy, which might be very important issue for further research in this field.

Configuration Design of a Train Bogie using Functional Decomposition and TRIZ Theory (기능분해와 TRIZ 이론을 이용한 철도 대차의 구성설계)

  • Lee, Jangyong;Han, Soonhung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • The configuration design of a mechanical product can be efficiently performed when it is based on the functional modeling. There are methodologies, which decompose function from the abstract level to the concrete level and match the functions to physical parts. But it is difficult to carry out an innovative design when the function is matched only to a pre-detined part. This paper describes the configuration design process of a mechanical product with a design expert system, which uses function taxonomy and TRIZ theory. The expert system can propose a functional modeling of a new part. which is not in the existing parts list. The abstraction levels of design knowledge are introduced, which describe the operation of mechanical product in the levels of abstraction. This is the theoretical background of using knowledge of function and TRIZ for configuration design. The expert system is adequate to control this design knowledge. which expresses knowledge of functional modeling, mapping rules between functions and parts, selection of parts, and TRIZ theory. The hierarchy of functions and machine parts are properly expressed by classes and objects in the expert system. A design expert system has been implemented for the configuration design of a train bogie, and a new brake system of the bogie is introduced with the aid of TRIZ's 30 function groups.

On the Application of Fuzzy Control to Ship's Stering System (선박의 퍼지 제어에 관한 연구)

  • 임봉택;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.4
    • /
    • pp.17-30
    • /
    • 1990
  • Since L.A. Zadeh introduced the theory of fuzzy sets in 1965, E.H. Mamdani applied the theory to the steam engine control in 1974. Since then, scientists have shown a great deal of interests in its application to practical problems and the possibility of the application of the theory a more complicate system has been increasing greatly. In the fuzzy control, the qualitative knowledge and intuition that the operators of a system has acquired through their experience can be logically described by the Linguistic Control Rule(LCR). The algorithm of th control is made of the LCR, and th control of an object is performed by processing this algorithm implementing a computer. in this thesis, the fuzzy controller of the ship's steering system is devided into two systems, namely FC1 and FC2, according to their control function. FC1 is for the course keeping steering, wheress FC2 is for the altering of s ship's course. The characteristics of the control system were investigated through the digital computer simulation and the results were compared with those of the conventional steering system. It was found that the fuzzy control was more efficient than the conventional auto pilot system.

  • PDF

A New Design Method of Sliding Mode Fuzzy Controller with Robust and fast Performance (강인성과 응답 성능을 고려한 슬라이딩모드 퍼지 제어기 설계에 관한 연구)

  • 박창우;이장욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.425-428
    • /
    • 1998
  • This paper proposes a new fuzzy controller using variable structure control theory. In this paper, after the time-varying fuzzy sliding surface is designed, the fuzzy rules are defined based on the variable structure control theory. This design method makes the fuzzy controller design more structured and can guarantee the stability and robustness of the fuzzy controller and overcome the shortcoming of the variable structure system. Through computer simulation and experiment of nonlinear inverted pendulum system, this thesis demonstrate that system has the robustness against disturbance and modelling error, and the tracking performance of it is improved.

  • PDF

TOC Buffer Management using the Concept of the Postponement (Postponement 개념을 이용한 TOC 버퍼 관리)

  • 한지은
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.275-278
    • /
    • 2001
  • TOC(Theory of Constraints) - the emphasis of this philosophy was on identifying and eliminating constraints(bottle-necks) in the system. TOC solves this and optimizes whole system by improving manufacturing constraints that limit system result. In this paper, it is shown that the concept of the "delayed differentiation" can be applied for enhancing the efficiency of the time buffer and thus reducing the of the time buffer.

  • PDF