• Title/Summary/Keyword: system state

Search Result 14,795, Processing Time 0.039 seconds

A Rule-based Approach for the recognition of system isolation state using information on circuit breakers (차단기 정보를 이용한 계통의 분리 상태 인식의 룰-베이스적 접근)

  • Park, Y.M.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.841-842
    • /
    • 1988
  • For determination of black-out area and restoration area by an expert system for fault section estimation and power system restoration using information from circuit breakers, it is necessary that the recognition of system isolation state and a method of finding the change of system isolation state by the state transition of breakers in isolated system. This paper presents a method of resolving the above problem by rule-based approach.

  • PDF

Harmonic State Estimation in Power System (전력시스템 고조파 상태 추정에 관한 연구)

  • Park, H.C.;Lee, J.P.;Wang, Y.P.;Chong, H.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • Electrical power system has very complexity problem that it is plan measurement system to achieve Harmonic State Estimation (HSE). This complexity problem depends on discord of necessary accuracy, certainty of noise that exist in data communication damage and converter, adaptability of network modification and minimum of expense size of system, estimated monitering. Also, quantity of available measurement equipment for harmonic measurement has been limited. Therefore, systematic method that choose measurement location for harmonic state estimation. This paper is that see proposed HSE that use Observability Analysis(OA) for harmonic state estimation of electrical power system. OA depends on measurement number, measurement location and measurement form here, it is analysis method that depend on network form and admittance of the system. OA used achieve harmonic state estimation that it is Applied to New Zealand electrical power system to prove validity of HSE algorithm that propose. This study result about harmonic state estimation of electrical power system displayed very economical and effective method by OA.

  • PDF

A Suggestion of Fuzzy Estimation Technique for Uncertainty Estimation of Linear Time Invariant System Based on Kalman Filter

  • Kim, Jong Hwa;Ha, Yun Su;Lim, Jae Kwon;Seo, Soo Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.919-926
    • /
    • 2012
  • In order to control a LTI(Linear Time Invariant) system subjected to system noise and measurement noise, first of all, it is necessary to estimate the state of system with reliability. Kalman filtering technique has been widely used to estimate the state of the stochastic LTI system with stationary noise characteristics because of its estimation ability versus algorithm simplicity. However, it often fails to estimate the state of the LTI system of which system parameter uncertainty exists partly and/or input uncertainty exists. In this paper, a new estimation technique based on Kalman filter is suggested for stochastic LTI system under parameter uncertainty and/or input uncertainty. A fuzzy estimation algorithm against uncertainties is introduced so as to compensate the state estimate filtered by Kalman filter. In order to verify the state estimation performance of the suggested technique, several simulations are accomplished.

State estimation of stochastic bilinear system (추계 이선형 시스템의 상태추정)

  • 황춘식
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.728-733
    • /
    • 1981
  • Most of real world systems are highly non-linear. But due to difficulties in analyzing and dealing with it, only the linear system theory is well estabilished. Bilinear system where state and control are linear but not linear jointly is introduced. Here shows that optimal state estimation of stochastic bilinear system requirs infinite dimensional filter, thus onesub-optimal estimator for this system is suggested.

  • PDF

A Design of Linear State Observers for Motorized Seat Belt System (전동식 안전벨트 시스템의 선형 상태 관측기 설계)

  • Lee, Kang-Seok;Choi, Chin-chul;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.58-66
    • /
    • 2012
  • This paper describes a design and a verification of linear state observers for a motorized seat belt system to estimate state information such as angular velocity and load torque. The motorized seat belt system provides functions to protect passengers and improve passenger's convenience. To realize these functions, sensors which can measure an angular velocity and load torque are needed. By use of the linear state observer, state information can be estimated without sensors. The motorized seat belt system is analysed and represented as a state space model which contains load torque as an augmented state. By the developed state space model, a full and reduced order observer are designed and verified by experiments. The full and reduced order observer are also compared from points of view of execution time and noise robustness.

Real-time steady state identification technology of a heat pump system to develop fault detection and diagnosis system (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.282-287
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF

Interconnected AC/DC System (문직운전계통을 포함한 전럭계통에서의 상태주정에 관한 연구)

  • 김준현;박건수;이종범
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 1988
  • This paper descibes a method for the state estimation in power systems with interconnected AC/DC system. The state values in interconnected AC/DC system are estimated using measurement values with the pseudo measurement so that the number of telemetering measurement can be reduced. Especially, the state values in AC system are estimated through hierarchical method after system decomposition including superposition bus was formed for the state estimation in large-scale power systems. The results of the application to the two model power systems show the dffectiveness of the presented algorithms.

  • PDF

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF

The System and Activity of Port State Control in Japan

  • Ichikawa, Yoshiro
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2000.05a
    • /
    • pp.86-100
    • /
    • 2000
  • The author of this document is generally in charge of Port State Control affairs at the headquarters of Ministry of Transport, Japan. In this document, the necessity of Port State Control, the brief history of japanese Port State Control and the present system of Port State Control in Japan are introduced. Also, the newest output of Japanese Port State Control which is an annual statistic of 1999 is explained, subsequently the policy and strategy on Port State Control in Japan is introduced.

  • PDF

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.