• Title/Summary/Keyword: system moments

Search Result 525, Processing Time 0.039 seconds

Study of Flight Simulation using Real-Time Aerodynamic Model (실시간 공력모델을 이용한 비행 시뮬레이션 연구)

  • Lee, Chang Ho;Park, Young Min;Choi, Hyoung Sik
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

Integrated dynamics modeling for supercavitating vehicle systems

  • Kim, Seonhong;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.346-363
    • /
    • 2015
  • We have performed integrated dynamics modeling for a supercavitating vehicle. A 6-DOF equation of motion was constructed by defining the forces and moments acting on the supercavitating body surface that contacted water. The wetted area was obtained by calculating the cavity size and axis. Cavity dynamics were determined to obtain the cavity profile for calculating the wetted area. Subsequently, the forces and moments acting on each wetted part-the cavitator, fins, and vehicle body-were obtained by physical modeling. The planing force-the interaction force between the vehicle transom and cavity wall-was calculated using the apparent mass of the immersed vehicle transom. We integrated each model and constructed an equation of motion for the supercavitating system. We performed numerical simulations using the integrated dynamics model to analyze the characteristics of the supercavitating system and validate the modeling completeness. Our research enables the design of high-quality controllers and optimal supercavitating systems.

Strain Decomposition Method in Hull Stress Monitoring System for Container Ship

  • Park, Jae-Woong;Kang, Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.56-65
    • /
    • 2003
  • The hull monitoring systems of container ships with four long-base gages give enough information for identifying the hull girder loads such as bending and torsional moments. But such a load-identification for container ships has not been known. In this paper, a load-identification method is suggested in terms of a linear matrix equation that the measured strain vector equals to the multiplication of the transformation matrix and the desired strain component vector. The equation is proved to be mathematically complete by the property of positive-definite determinant of the transformation matrix. The method is applied to a hull stress monitoring system for 8100TED container ship during sea trial, and the estimated external loads illustrate reasonable results in comparison with the pre-estimated results. This moment decomposition concept has also been tested in real operation conditions. The typical phenomena over the Suez Canal illustrated very suitable results comparing with the physical understandings. Henceforth, one can effectively use the proposed concept to monitor the hull girder loads such as bending and torsional moments.

Hysteretic Behavior of Composite Beam Detail with Slit around Column (기둥 주위에 슬리트를 갖는 합성보 접합부의 반복하중 하에서의 거동)

  • Yang Il-Seung;Yun Hyun-Do;Lee Kang-Min;Park Wan-Shin;Han Byung-Chan;Moon Yeon-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.101-104
    • /
    • 2004
  • Composite beams are generally known to possess higher flexural stiffness and strength under the positive bending moments than the normal steel beams. However the these beams also exhibit large differences in flexural stiffness and strength when both positive and negative bending moments are applied. As observed during the 1995 Kobe Earthquake, these beams tend to be fractured on the bottom flanges under repeated cyclic loadings. The objective of this study is to develop and evaluate the composite beam detail, which is able to effectively resist the seismic loadings. The proposed system is composed of the slit on concrete slab around column. A limited experimental program was designed and conducted to investigate the hysteretic behavior of the proposed composite beam system. From the experimental data obtained from the testing of three specimens, the proposed composite beam detail is found to possess large beam rotation than normal steel beams.

  • PDF

An implementation of the automatic labeling rolling-coil using robot vision system (로봇 시각 장치를 이용한 압연코일의 라벨링 자동화 구현)

  • Lee, Yong-Joong;Lee, Yang-Bum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.497-502
    • /
    • 1997
  • In this study an automatic rolling-coil labeling system using robot vision system and peripheral mechanism is proposed and implemented, which instead of the manual labor to attach labels Rolling-coils in a steel mill. The binary image process for the image processing is performed with the threshold, and the contour line is converted to the binary gradient which detects the discontinuous variation of brightness of rolling-coils. The moments invariant algorithm proposed by Hu is used to make it easy to recognize even when the position of the center are different from the trained data. The position error compensation algorithm of six degrees of freedom industrial robot manipulator is also developed and the data of the position of the center rolling-coils, which is obtained by floor mount camera, are transferred by asynchronous communication method. Therefore, even if the position of center is changed, robot moves to the position of center and performs the labeling work successfully. Therefore, this system can be improved the safety and efficiency.

  • PDF

Seismic analysis of frame-strap footing-nonlinear soil system to study column forces

  • Garg, Vivek;Hora, Manjeet S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.645-672
    • /
    • 2013
  • The differential settlements and rotations among footings cannot be avoided when the frame-footing-soil system is subjected to seismic/dynamic loading. Also, there may be a situation where column(s) of a building are located near adjoining property line causes eccentric loading on foundation system. The strap beams may be provided to control the rotation of the footings within permissible limits caused due to such eccentric loading. In the present work, the seismic interaction analysis of a three-bay three-storey, space frame-footing-strap beam-soil system is carried out to investigate the interaction behavior using finite element software (ANSYS). The RCC structure and their foundation are assumed to behave in linear manner while the supporting soil mass is treated as nonlinear elastic material. The seismic interaction analyses of space frame-isolated footing-soil and space frame-strap footing-soil systems are carried out to evaluate the forces in the columns. The results indicate that the bending moments of very high magnitude are induced at column bases resting on eccentric footing of frame-isolated footing-soil interaction system. However, use of strap beams controls these moments quite effectively. The soil-structure interaction effect causes significant redistribution of column forces compared to non-interaction analysis. The axial forces in the columns are distributed more uniformly when the interaction effects are considered in the analysis.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

Dynamic soil-structure interaction studies on 275m tall industrial chimney with openings

  • Jayalekshmi, B.R.;Thomas, Ansu;Shivashankar, R.
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.233-250
    • /
    • 2014
  • In this paper, a three dimensional soil-structure interaction (SSI) is numerically simulated using finite element method in order to analyse the foundation moments in annular raft of tall slender chimney structures incorporating the effect of openings in the structure and the effect of soil flexibility, when the structure-soil system is subjected to El Centro (1940) ground motion in time domain. The transient dynamic analysis is carried out using LS-DYNA software. The linear ground response analysis program ProShake has been adopted for obtaining the ground level excitation for different soil conditions, given the rock level excitation. The radial and tangential bending moments of annular raft foundation obtained from this SSI analysis have been compared with those obtained from conventional method according to the Indian standard code of practice, IS 11089:1984. It is observed that tangential and radial moments increase with the increase in flexibility of soil. The analysis results show that the natural frequency of chimney decreases with increase in supporting soil flexibility. Structural responses increase when the openings in the structure are also considered. The purpose of this paper is to propose the need for an accurate evaluation of the soilstructure interaction forces which govern the structural response.

Aerodynamic Load Analysis at Hub and Drive Train for 1MW HAWT Blade (1MW급 풍력 터빈 블레이드의 허브 및 드라이브 트레인 공력 하중 해석)

  • Cho Bong-Hyun;Lee Chang-Su;Choi Sung-Ok;Ryu Ki-Wahn
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.25-32
    • /
    • 2005
  • The aerodynamic loads at the blade hub and the drive shaft for 1MW horizontal axis wind turbine are calculated numerically. The geometric shape of the blade such as chord length and twist angle can be obtained fran the aerodynamic optimization procedure. Various airfoil data, that is thick airfoils at hub side and thin airfoils at tip side, are distributed along the spanwise direction of the rotor blade. Under the wind data fulfilling design load cases based on the IEC61400-1, all of the shear forces, bending moments at the hub and the low speed shaft of the drive train are obtained by using the FAST code. It shows that shear forces and bending moments have a periodic. trend. These oscillating aerodynamic loads will lead to the fatigue problem at both of the hub and drive train From the load analysis the maximum shear forces and bending moments are generated when wind turbine generator system operates in the case of the extreme speed wind condition.

  • PDF

The Efficient Sensitivity Analysis on Statistical Moments and Probability Constraints in Robust Optimal Design (강건 최적설계에서 통계적 모멘트와 확률 제한조건에 대한 효율적인 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliability-based design optimization are examples of the most famous methodologies. In their formulation, the mean and standard deviation of a performance function and constraints expressed by probability conditions are involved. Therefore, it is essential to effectively and accurately calculate them and, in addition, the sensitivity results are required to obtain when the nonlinear programming is utilized during optimization process. We aim to obtain the new and efficient sensitivity formulation, which is based on integral form, on statistical moments such as the mean and standard deviation, and probability constraints. It does not require the additional functional calculation when statistical moments and failure or satisfaction probabilities are already obtained at a design point. Moreover, some numerical examples have been calculated and compared with the exact solution or the results of Monte Carlo Simulation method. The results seem to be very satisfactory.