The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.