Browse > Article
http://dx.doi.org/10.7780/kjrs.2019.35.2.8

Uncertainties of SO2 Vertical Column Density Retrieval from Ground-based Hyper-spectral UV Sensor Based on Direct Sun Measurement Geometry  

Kang, Hyeongwoo (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Park, Junsung (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Yang, Jiwon (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Choi, Wonei (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Kim, Daewon (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)
Lee, Hanlim (Department of Spatial Information Engineering, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.35, no.2, 2019 , pp. 289-298 More about this Journal
Abstract
In this present study, the effects of Signal to Noise Ratio (SNR), Full Width Half Maximum (FWHM), Aerosol Optical Depth (AOD), $O_3$ Vertical Column Density ($O_3$ VCD), and Solar Zenith Angle (SZA) on the accuracy of sulfur dioxide Vertical Column Density ($SO_2$ VCD) retrieval have been quantified using the Differential Optical Absorption Spectroscopy (DOAS) method with the ground-based direct-sun synthetic radiances. The synthetic radiances produced based on the Beer-Lambert-Bouguer law without consideration of the diffuse effect. In the SNR condition of 650 (1300) with FWHM = 0.6 nm, AOD = 0.2, $O_3$ VCD = 300 DU, and $SZA=30^{\circ}$, the Absolute Percentage Difference (APD) between the true $SO_2$ VCD values and those retrieved ranges from 80% (28%) to 16% (5%) for the $SO_2$ VCD of $8.1{\times}10^{15}$ and $2.7{\times}10^{16}molecules\;cm^{-2}$, respectively. For an FWHM of 0.2 nm (1.0 nm) with the $SO_2$ VCD values equal to or greater than $2.7{\times}10^{16}molecules\;cm^{-2}$, the APD ranges from 6.4% (29%) to 6.2% (10%). Additionally, when FWHM, SZA, AOD, and $O_3$ VCD values increase, APDs tend to be large. On the other hand, SNR values increase, APDs are found to decrease. Eventually, it is revealed that the effects of FWHM and SZA on $SO_2$ VCD retrieval accuracy are larger than those of $O_3$ VCD and AOD. The SZA effects on the reduction of $SO_2$ VCD retrieval accuracy is found to be dominant over the that of FWHM for the condition of $SO_2$ VCD larger than $2.7{\times}10^{16}molecules\;cm^{-2}$.
Keywords
sulfur dioxide; $SO_2$ vertical column density; ground-based; Uncertainty; trace gas; DOAS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pope III, C. A. and D.W. Dockery, 2006. Health effects of fine particulate air pollution: lines that connect, Journal of the Air & Waste Management Association, 56(6): 709-742.   DOI
2 Levelt, P. F., G.H. van den Oord, M.R. Dobber, A. Malkki, H. Visser, J. de Vries, and H. Saari, 2006. The ozone monitoring instrument, IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093-1101.   DOI
3 Li, Z., P. Wang, and J. Cihlar, 2000. A simple and efficient method for retrieving surface UV radiation dose rate from satellite, Journal of Geophysical Research: Atmospheres, 105(D4): 5027-5036.   DOI
4 Longo, B. M., W. Yang, J.B. Green, F.L. Crosby, and V.L. Crosby, 2010. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008, Journal of Toxicology and Environmental Health, 73(20): 1370-1381.   DOI
5 McKenzie, R. L. and P. V. Johnston, 1995. Comment on "Problems of UV-B radiation measurements in biological research: Critical remarks on current techniques and suggestions for improvements" by H. Tug and MEM Baumann, Geophysical Research Letters, 22(9): 1157-1158.   DOI
6 Natraj, V., X. Liu, S. Kulawik, K. Chance, R. Chatfield, D.P. Edwards, and R. Spurr, 2011. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmospheric Environment, 45(39): 7151-7165.   DOI
7 Park, J., H. Lee, J. Kim, J. Herman, W. Kim, H. Hong, and D. Kim, 2018. Retrieval Accuracy of HCHO Vertical Column Density from Ground-Based Direct-Sun Measurement and First HCHO Column Measurement Using Pandora, Remote Sensing, 10(2): 173.   DOI
8 Platt, U. and J. Stutz, 2008. Differential absorption spectroscopy, In: Differential Optical Absorption Spectroscopy, Physics of Earth and Space Environments, Springer, Berlin, Heidelberg, pp. 135-174.
9 Lee, H., 2013. Comparison of Nitrogen Dioxide Retrieved by MAX-DOAS and OMI measurements in Seoul, Korean Journal of Remote Sensing, 29(2): 235-241 (in Korean with English abstract).   DOI
10 Richter, A., M. Weber, J.P. Burrows, J.C. Lambert, and A. Van Gijsel, 2014. Validation strategy for satellite observations of tropospheric reactive gases, Annals of Geophysics, 56.
11 Schoeberl, M. R., A.R. Douglass, E. Hilsenrath, P.K. Bhartia, R. Beer, J.W. Waters, and P.F. Levelt, 2006. Overview of the EOS Aura mission, IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1066-1074.   DOI
12 Slusser, J., J. Gibson, D. Bigelow, D. Kolinski, P. Disterhoft, K. Lantz, and A. Beaubien, 2000. Langley method of calibrating UV filter radiometers, Journal of Geophysical Research: Atmospheres, 105(D4): 4841-4849.   DOI
13 Tug, H. and M.E. Baumann, 1994. Problems of UV-B radiation measurements in biological research. Critical remarks on current techniques and suggestions for improvements, Geophysical Research Letters, 21(8): 689-692.   DOI
14 Vandaele, A. C., C. Hermans, and S. Fally, 2009. Fourier transform measurements of $SO_2$ absorption cross sections: II: Temperature dependence in the 29,000-44,000 $cm^{-1}$ (227-345 nm) region, Journal of Quantitative Spectroscopy and Radiative Transfer, 110(18): 2115-2126.   DOI
15 Wang, T., F. Hendrick, P. Wang, G. Tang, K. Clemer, H. Yu, and G. Pinardi, 2014. Evaluation of tropospheric $SO_2$ retrieved from MAX-DOAS measurements in Xianghe, China, Atmospheric Chemistry and Physics, 14(20): 11149-11164.   DOI
16 Wu, F. C., P.H. Xie, A. Li, K.L. Chan, A. Hartl, Y. Wang, and J.G. Liu, 2013. Observations of $SO_2$ and $NO_2$ by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010, Atmospheric Measurement Techniques, 6(9): 2277-2292.   DOI
17 Bogumil, K., J. Orphal, T. Homann, S. Voigt, P. Spietz, O.C. Fleischmann, and J. Frerick, 2003. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region, Journal of Photochemistry and Photobiology A: Chemistry, 157(2-3): 167-184.   DOI
18 Yan, H., X. Li, W. Wang, X. Zhang, L. Chen, D. Han, and L. Gao, 2017. Comparison of $SO_2$ column retrievals from BRD and DOAS algorithms, Science China Earth Sciences, 60(9): 1694-1706.   DOI
19 Bovensmann, H., J.P. Burrows, M. Buchwitz, J. Frerick, S. Noel, V.V. Rozanov, and A.P.H. Goede, 1999. SCIAMACHY: Mission objectives and measurement modes, Journal of the Atmospheric Sciences, 56(2): 127-150.   DOI
20 Callies, J., E. Corpaccioli, M. Eisinger, A. Hahne, and A. Lefebvre, 2000. GOME-2-Metop's second-generation sensor for operational ozone monitoring, ESA Bulletin, 102: 28-36.
21 Hutchinson, T. C. and L. M. Whitby, 1977. The effects of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury smelting region of Canada, Water, Air, and Soil Pollution, 7(4): 421-438.
22 Eisinger, M. and J.P. Burrows, 1998. Tropospheric sulfur dioxide observed by the ERS-2 GOME instrument, Geophysical Research Letters, 25(22): 4177-4180.   DOI
23 Fioletov, V. E., C.A. McLinden, A. Cede, J. Davies, C. Mihele, S. Netcheva, and J. O'Brien, 2016. Sulfur dioxide ($SO_2$) vertical column density measurements by Pandora spectrometer over the Canadian oil sands, Atmospheric Measurement Techniques, 9(7): 2961-2976.   DOI
24 Herman, J., R. Evans, A. Cede, N. Abuhassan, I. Petropavlovskikh, and G. McConville, 2015. Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado, Atmospheric Measurement Techniques, 8(8): 3407-3418.   DOI
25 Khokhar, M. F., U. Platt, and T. Wagner, 2008. Temporal trends of anthropogenic $SO_2$ emitted by non-ferrous metal smelters in Peru and Russia estimated from satellite observations, Atmospheric Chemistry and Physics Discussions, 8(5): 17393-17422.   DOI
26 Knepp, T., M. Pippin, J. Crawford, G. Chen, J. Szykman, R. Long, and R. Delgado, 2015. Estimating surface $NO_2$ and $SO_2$ mixing ratios from fastresponse total column observations and potential application to geostationary missions, Journal of Atmospheric Chemistry, 72(3-4): 261-286.   DOI