• Title/Summary/Keyword: synthetic turfgrass

Search Result 17, Processing Time 0.021 seconds

Species Selection for Composite Turfgrass (복합잔디의 구성을 위한 초종 선택)

  • Youn, Jeong-Ho;Lee, Jae-Phil;Kim, Do-Hwan;Park, Sung-Mee;Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Synthetic turfgrass was developed for longer durability than natural turfgrass. As synthetic turfgrass use increases, disadvantage was exposed and composite turfgrass was designed to reinforce disadvantage of synthetic turfgrass. However, A few researches were conducted to evaluate composite turfgrass in South Korea. Therefore, this research was conducted to select a turfgrass species to maximize practical use of composite turfgrass. In 14 Oct. 2006 synthetic turfgrass was established in the research center in Hanul Sports Turf, Inc. located Hapcheon-Gun, Gyunggnam province. Kentucky bluegrass, Tall fescue, and a mixture of Kentucky bluegrass and Perennial ryegrass were used to combine with synthetic turfgrass. Wide and narrow types of synthetic turfgrass were used. As temperature increase, coverage of tall fescue and the mixture reduced but Kentucky bluegrass had the best result of turfgrass coverage although there were no differences on turfgrass quality among types of turfgrass.

Effects of Liquid Fertilizer Produced from Fermented Clippings for Kentucky bluegrass (Kentucky bluegrass의 생육을 위한 생초복합비료 효과)

  • Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • Organic fertilizers are divided into natural organic and synthetic organics. The benefits of natural organic fertilizer were reported from the previous researches. The previous researches have reported that clippings are nitrogen source for turfgrass growth. However, the limited research results about clippings as a source of natural organic fertilizers were reported. The objective of the research to investigate effects of liquid fertilizer produced from fermented clippings for creeping bentgrass growth. Liquid fertilizer (LF) produced was used for the research to be compared with urea and two natural organic fertilizers of different source (NO-1 and NO-2). Kentucky bluegrass (Poa pratensis L., Midnight) was used for the study. Turfgrass quality was measured by visual evaluation every two weeks from June to October, 2011 using a scale of 1 to 9 (1=worst, 6=acceptable, and 9=best). LF produced greater turfgrass quality than acceptable quality, especially with the summer period while urea and NO produced lower turfgrass quality than acceptable quality of 6. LF had less quality alteration than urea and NO during the study. Based on the result of the study, LF are more stable to maintain turfgrass quality than urea and NO.

Effects of Liquid Fertilizer Produced from Fermented Clippings for Creeping Bentgrass Growth (Creeping Bentgrass의 생육을 위한 예지물 발효 액상비료의 효과)

  • Kim, Sang-Jun;Kim, Do-Whan;Lee, Sang-Kook
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.202-207
    • /
    • 2011
  • Organic fertilizers are divided into natural organic and synthetic organics. The benefits of natural organic fertilizer were reported from the previous researches. However, the limited research results about clippings as a source of natural organic fertilizers were reported. The objective of the research to investigate effects of liquid fertilizer produced from fermented clippings for creeping bentgrass growth. Liquid fertilizer (LF) produced was used for the research to be compared with Urea and two natural organic fertilizers of different source (NO-1 and NO-2). Creeping bentgrass (Agrostis stolonifera L., L-93) was used for the study. Turfgrass quality was measured by visual evaluation every two weeks from June to October, 2011 using a scale of 1 to 9 (1=worst, 6=acceptable, and 9=best). Turfgrass disease damage was measured by percent of area damaged when a turfgrass disease occurred. LF produced lower damage than NO and urea when temperature was high. Although NO-2 produced the highest or equal to the highest turfgrass quality in June and October, LF had the highest or equal to the highest quality from July to September.

Biological Activity of Extracts from Zea mays L. and Pinus densiflora L. (옥수수(Zea mays L.)와 소나무(Pinus densiflora L.) 추출물의 생물학적 활성)

  • ;Soul Chun;Nick E. Christians
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.4
    • /
    • pp.203-210
    • /
    • 1998
  • Environmental concerns arising from synthetic herbicides in plant management systems have led to an interest in plant-derived compounds as natural herbicides. Inhibitory effects of compounds extracted with 50% methanol from corn (Zea mays L.) and pine (Pinus densiflora L.) were evaluated on large crabgrass (Digitaria sanguinalis (L.) Scop.), annual bluegrass Poa annua L.), radish (Raphanus sativus L.), and perennial ryegrass (Lolium perenne L.) The aqueous extracts inhibited seed germination and had postemergence activity on the four species. The stability of biological activity of corn grain, stover, and root extracts was not affected by heating to $135^{\circ}C$ or freezing/thawing treatments when applied at levels above 0.25kg m(sup)-2 based on dry weights of powders before extraction. Heating reduced the activity of pine litter and bark extracts at all levels except the highest application level but had little effect on pine needle extracts.

  • PDF

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

Development of Antagonistic Microorganism for Biological Control of Dollar Spot of Turfgrass (잔디 동전마름병의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Shim, Taek-Su;Jung, Woo-Cheol;Do, Ki-Seok;Shim, Gyu-Yul;Lee, Jae-Ho;Choi, Kee-Hyun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • Dollar spot caused by Sclerotinia homeocarpa is one of major diseases in putting greens. Microorganisms antagonistic to S. homeocarpa, a pathogen of dollar spot, were primarily screened through in vitro tests, including dual culture method and triple layer agar diffusion method. In vivo tests were also conducted to select the best candidate for a biocontrol microorganism, using pot experiment. Bacillus subtilis EW42-1 and Trichoderma harziaum GBF-0208 were finally selected as biocontrol agents against dollar spot. Relative Performance Index(RPI) was used as a criterion of selecting potential biocontrol agents. B. subtilis EW42-1 and T. harzianum GBF-0208 showed resistance to several agrochemicals mainly used in a golf course. B. subtilis EW42-1 and T. harzianum GBF-0208 suppressed effectively the disease progress of dollar spot like synthetic fungicide tebuconazole in the nursery where dollar spot had seriously occurred. B. subtilis EW42-1 and T. harzianum GBF-0208 have a potential to be biocontrol agents for the control of dollar spot.

Flowering Periods, Genetic Characteristics, and Cross-Pollination Rate of Zoysia spp. in Natural Open-Pollination (자연 방임수분 상태에서 한국잔디류의 개화기간, 유전특성 및 타가수분율)

  • Choi, Dong-Keun;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2008
  • This study was carried out to provide basic information for the breeding of zoysiagrass synthetic varieties. For estimation of flowering periods, genetic characteristics, and cross-pollination rate, 5 combinations of zoysiagrass breeding lines were compared. Days to stigma emergence and anther exertion were observed in the field to calculate overlapping dates for cross-fertilization. Harvested seed from cross breeding combinations were planted to compare genetic characteristics using morphological traits of progenies. These data were used for determination of 7 phenotypic inheritance types with 8 morphological traits. Cross-pollination rates in 3 combinations of zoysiagrasses were estimated by using lower part color of grass shoots. Cross-pollination rates of zoysiagrass ranged from 11.3$\sim$48.9%, which indicated that zoysiagrass is an allogamous plant. When zoysiagrass breeding lines are properly combined, they may result in valuable synthetic cultivars.

Status and Perspective of Bioherbicde Development for Organic Weed Management (친환경 잡초방제를 위한 생물제초제의 상용화 현황)

  • Pyon, Jong Yeong;Lee, Jeung Joo;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Weed management under organic farming systems is very problematic since organic agriculture does not allow synthetic herbicides. Bioherbicide is needed to develop for weed management in organic agriculture systems. This review covers current status and perspectives of bioherbicide development for effective nonchemical weed management in organic farming systems. Bioherbicides are products of natural origin derived from living organisms, and more specifically bacteria, fungus and plants including natural metabolites for weed control. Bioherbicides derived from microorganisms or natural molecules are currently available on the pesticide markets. Devine, Lockdown (Collego), BioMal, Camperico, Organo-Sol and Opportune were derived from bacteria, Woad Warrior, Smolder, Mygogen, Chontrol Paste, Starritor and Phoma derived from fungus, and Katoun (pelargonic acid) and Beloukha were derived from plants. Corn gluten meal products and plant essential oils products are also available for nonselective weed control in organic agriculture. Organic weed management methods may be more feasible in small scale farming and high-value crops, and bioherbicides may be applied with other weed control practices in organic farming systems.

Current Status and Perspectives of Weed Science in the World (세계 잡초연구 동향 및 전망)

  • Lee, In-Yong;Park, Tea-Seon;Choi, Jung Sup;Ko, Young-Kwan;Park, Kee Woong;Seo, Hyun-A
    • Weed & Turfgrass Science
    • /
    • v.5 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • This paper provides the current status of weed science and prospects for the development of weed science based on the research trends presented at the 7th International Weed Science Conference in 2016. Approximately 520 researchers from 59 countries, including Korea, participated in the conference and presented 625 papers in nine research areas. Major research topics were herbicide resistance, weed ecology, weed management in agricultural and non-agricultural lands, herbicide spray technology, and non-chemical weed control. Studies on herbicide resistance presented more than 30% of all papers presented. Particularly, resistance to non-selective herbicides, such as glyphosate and glufosinate-ammonium, and non-target sites of resistance mechanisms were the main subjects of the herbicide resistance research area. Moreover, the conference focused on research concerning herbicide resistant weeds of staple crops of the world (corn, wheat, and rice). Arylex was introduced as a new compound which has a mode of herbicidal action similar to synthetic auxin. Three compounds being developed as HPPD inhibitors were studied for ways to reduce their toxicity and tested as mixed with safeners. Additionally, parasitic weeds, which are not native to Korea, are an expanding research subject in the world. Although 45 years have passed since the first report of herbicide resistance in 1970, herbicide resistance remains a serious problem in most intensive cropping systems of the world and will continue to be a major area of study in the future.

Classification According to Site of Action of Paddy Herbicides Registered in Korea (국내 수도용 제초제의 작용기작별 분류)

  • Park, Jae-Eup;Kim, Sang-Su;Kim, Young-Lim;Kim, Min-Ju;Ha, Heun-Young;Lee, In-Yong;Moon, Byung-Chul;Ihm, Yang-Bin
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2014
  • This review study was conducted to recommend the effective use of herbicide mixtures in Korea. The herbicide ingredients by Herbicide Resistancce Action Committee (HRAC) was classified into 23 groupes according to the mode of action (acetyl CoA carboxylase inhibitors, acetolactate synthase, photosystem I and II inhibitors, protoporphyrinogen oxidase inhibitors, carotenoid biosynthesis inhibitors, enolpyruvyl shikimate-3-phosphate synthase inhibitors, glutamine synthetase inhibitors, dihydropteroate synthetase inhibitors, mitosis inhibitors, cellulose inhibitors, oxidative phosphorylation uncouplers, fatty acid and lipid biosynthesis inhibitors, synthetic auxins, auxin transport inhibitors and potential nucleic acid inhibitors or non-descript mode of action). The rice herbicide mixtures registered in Korea were classified based on the guideline of HRAC. Accordingly, such a classification system for resistance management can help to avoid continuous use of the herbicide having the same mode of action in the same field.