Browse > Article
http://dx.doi.org/10.5660/WTS.2017.6.1.1

Status and Perspective of Bioherbicde Development for Organic Weed Management  

Pyon, Jong Yeong (ReSEAT Program, Korea Science & Technology Information)
Lee, Jeung Joo (Department of Applied Biology, Geongsang National University)
Park, Kee Woong (Department of Crop Science, Chungnam National University)
Publication Information
Weed & Turfgrass Science / v.6, no.1, 2017 , pp. 1-10 More about this Journal
Abstract
Weed management under organic farming systems is very problematic since organic agriculture does not allow synthetic herbicides. Bioherbicide is needed to develop for weed management in organic agriculture systems. This review covers current status and perspectives of bioherbicide development for effective nonchemical weed management in organic farming systems. Bioherbicides are products of natural origin derived from living organisms, and more specifically bacteria, fungus and plants including natural metabolites for weed control. Bioherbicides derived from microorganisms or natural molecules are currently available on the pesticide markets. Devine, Lockdown (Collego), BioMal, Camperico, Organo-Sol and Opportune were derived from bacteria, Woad Warrior, Smolder, Mygogen, Chontrol Paste, Starritor and Phoma derived from fungus, and Katoun (pelargonic acid) and Beloukha were derived from plants. Corn gluten meal products and plant essential oils products are also available for nonselective weed control in organic agriculture. Organic weed management methods may be more feasible in small scale farming and high-value crops, and bioherbicides may be applied with other weed control practices in organic farming systems.
Keywords
Bioherbicide; Biopesticide; Natural product; Organic weed management;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Imaizumi, S., Nishino, T., Miyabe, K., Fujimori, T. and Yamada, M. 1997. Biological control of annual bluegrass (Poa annua L.) with a Japanese isolate of Xanthomonas campestris pv. Poae (JTP482), Biological Control 14:7-14.
2 Irvine, N.M., Yerkes, C.N., Graupner, P.R., Robert, R.E., Hahn, D.R., et al. 2008. Synthesis and characterization of synthetic analogs of cinnacidin, a novel phytotoxin from Nectria sp. Pest Manag. Sci. 64:891-899.   DOI
3 Kang, K.S., Won, O.J., Park. S.H., Eom, M.Y., Hwang, K.S., et al. 2014. Herbicidal efficacy of various formulations and application timings of imazosulfuron+fentrazamide mixtures in rice. Kor. J. Agri. Sci. 41(1): 17-22. (In Korean)   DOI
4 Kawada, H. and Sasaki, M. 1986. Pelargonic acid containing liquid agents for weed control. JP Patent 2011-001337.
5 Kenney, D.S. 1986. Devine-The way it was developed-an industrial view. Weed Sci. 34:15-16.
6 Kim, K.W. and Baek, J.K. 2003a. Isolation and identification of herbicidal active substances from Zanthoxylum schinifolium Siebold & Zucc. Kor. J. Plant Resources. 2:58-58. (In Korean)
7 Kim, K.W. and Baek, J.K. 2003b. Screening of herbicidal active substances from Korean native plant resources. Kor. J. Plant Resources 16:59(Abstr.) (In Korean)
8 Kim, K.W., Shin, J.G. and Kim, J.S. 2002. Isolation and identification of plant growth retardants from Atractylodes japonica rhizome. Kor. J. Weed Sci. 22(4):199-122. (In Korean)
9 Kim, B.S. and Kim, J.S. 1993. Identification of Phytophthora species infected to kudzu. Kor. J. Plant Pathol. 9:319(Abstr.). (In Korean)
10 Kim, M.S., Lee, Y.S., Khoa, D.B., Kim, H.Y., Choi, H.J., et al. 2004. Herbicidal activity of Korean native plants(II). Kor. J. Pesticide Sci. 8(3):220-230. (In Korean)
11 Kim, S.M., Lee, Y.S., Kim, H.Y., Choi, H.J., Heo, S.J., et al. 2005. Herbicidal activity of Korean native plants(III), Kor. J. Pesticide Sci. 9(2):173-180. (In Korean)
12 Kim, S.M. 2006. Herbicidal activity of Korean native plants(IV). Kor. J Pesticide Sci. 10(3):225-229. (In Korean)
13 Kim, P.K., Park, D.J. and Kim, C.J. 1996. Screening of Penicillium species showing herbicidal activity on Trifolium repens L. Kor. J. Pesticide Sci. 39(6):455-459. (In Korean)
14 Kim, P.K., Park, D.J., Choi, J.S., Hwang, I.T., Hong, K.S., et al. 1997. Biological control by Penicillium species. Agri. Chem & Biotech. 40(11):65-70. (In Korean)
15 King, R.R. and Calhoun, L.A. 2009. The thaxtomin phytotoxins: Sources, synthesis, biotransformation and biological activity. Phytochemistry. 70:833-841.   DOI
16 Lee, D.L., Knudsen, C.G. and Michaely, W.J. 1998. The structureactivity relationships of the triketone class of HPPD herbicides. Pestic. Sci. 54:377-384.   DOI
17 Lee, S.F. and Anderson, R.J. 1997. Preparation of herbicidal ribofuranose derivatives. US Patent 683963.
18 Duke, S.O., Baerson, S.R. and Dayan, F.E. 2003. United States department of agriculture-agricultural research service research on natural products for pest management. Pest Manag. Sci. 59:708-717.   DOI
19 Duke, S.O., Evidente, A., Fiore, M., Rimando, A.M., Dayan, F.E., et al. 2011. Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pestic Biochem. Physiol. 100:41-50.   DOI
20 Edmunds, A.J.F. 2007. 4-Hdroxyphenylpyruvate dioxygenase (HPPD) inhibitors: triketones. pp. 221-243. In: Kramer, W. and Schirmer, U. (Eds.). Modern crop protections. Vol. 1. Wiley, Weiheim, Germany.
21 Eldeek, M.H. and Hess, F.D. 1986. Inhibited mitotic entry is the cause of growth inhibition by cinmethylin. Weed Sci. 34:684-688.
22 EPA (Environmental Protection Agency). 2002. Pesticide Registration and Classification Procedures. Title 40, Code of Federal Regulations. Section 152.25 (f).
23 Fenical, W. and Jenesn, P.R. 2006. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol: 2, 666-673.   DOI
24 Gray, R.A., Rusay, R.J. and Tseng, C.K. 1980. 1-Hydroxy-2-(alkylketo)-4,4,6-tetramethyl cyclohexen-5-diones. US Patent 202840.
25 Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Rev. Environ. Contam. Toxicol. 138:73-146.
26 Grossmann, K., Hutzler, J., Tresch, S., Christiansen, N. and Ehrhardt, T. 2012. On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1,2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase. Pest Manag. Sci. 68:482-492.   DOI
27 Hahn, D.R., Graupner, P.R., Chapin, E., Gray, J., Heim, D., et al. 2009. Albucidin: a novel bleaching herbicide from Streptomyces albus subsp. chlorinus NRRL B-24108. J. Antibiot. 62: 191-194.   DOI
28 Hintz, W. 2007. Development of Chondrostereum purpureum as a mycoherbicide for deciduous brush control. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (Eds.). Biological Control, a Global Perspective. CAB Intern Ed. pp. 284-290.
29 Houtz, R.L., Dirk, L.M.A. and Williams, M.A. 2004. Inhibitors of plant peptide deformylase for use as broad-spectrum herbicides and methods for identifying the same. US Patent 730634.
30 Huang, H. and Asolkar, R. 2011. Use of sarmentine and its analogs for controlling plant pests. US Patent 8957000.
31 Huter, O.F. 2011. Use of natural products in the crop protection industry. Phytochem. Rev. 10:185-194.   DOI
32 Duke, S., Abbas, H., Amagasa, T. and Tanaka, T. 1996. Phytotoxins of microbial origin with potential for use as herbicides. Crit. Rev. Anal. Chem. 35:82-112.
33 Duke, S.O., Dayan, F.E., Romando, I. and Rimando, A. 2000. Natural products as sources of herbicides: Current status and future trends. Weed Res. 40:99-111.   DOI
34 Bailey, K.L. and Falk, S. 2011. Turning research on microbial bioherbicides into commercial products-a Phoma story. Pest Technology. 5:73-79.
35 Bailey, K.L. 2014. The Bioherbicides approach to weed control using plant pathogens. pp. 245-266. USA. In: Abrol and Dharma (Eds). Integrated Pest Management: Current Concepts and Ecological Perspective, Elsevier (Academic Press).
36 Bajas, J., Pan, Z. and Duke, O. 2011. Transcriptional responses to cantharidin, protein phosphatase inhibitors, in Arabidopsis thiliana reveals the involvement of multiple signal transduction pathways. Physiol Plant. 143:188-205.   DOI
37 Bayer, E., Gugel, K., Hagele, K., Hagenmaier, H., Jessipow, S., et al. 2004. Mitteilung. Phosphinotricin and phosphinothricylalanyl-alanin. Helv Chim.Acta. 55:224-239
38 Beaudegnies, R., Edmunds, A.J., Fraser, T.E.M., Hall, R.G., Hawkes, T.R., et al. (2009). Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors-A review of triketone chemistry story from a Syngenta perspective. Bioorg. Med. Chem. 17:4134-4152.   DOI
39 Bailey, K.L. and Derby, J. 2010. Fungal isolates of Phoma macrostoma or extracts and biological control compositions for control of weeds. US Patent 772155.
40 Bowers, R.C. 1986. Commercialization of Collego-an industrial view. Weed Sci. 34:24-25.
41 Boyetchko, S., Bailey, K., Hynes, R. and Peng, C. 2007. Development of the mycoherbicide, BioMal. pp. 274-283. In: Vincent, C., Goettel, M.S. and Lazarovits, G. (Eds.). Biological Control, a Global Perspective. CAB Intern.
42 Chaimovitsh, D., Abu-Abied, M., Belausov, E., Rubin, B., Dudai, N., et al. 2010. Microtubles are an intracellular target of the plant terpene citral. Plant J. 61:399-408.   DOI
43 Christians, N.E. 1990. Pre-emergence weed control using corn gluten meal. US Patent 030268.
44 Cordeau, S., Triolet, M., Wayman, S., Steinberg, C. and Guillemin, J.P. 2016. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. J. Crop Prot. 87(20):44-49.   DOI
45 Chung, Y.R., Kim, B.S., Kim, H.T. and Cho, K.Y. 1990. Identification of Exserohilum species, a fungal pathogen causing leaf blight of barnyardgrass. Kor J. Plant Pathol. 6:429-433. (In Korean)
46 Coleman, R.D. and Penner, D. 2006. Desiccant activity of short chain fatty acids. Weed Technol. 20:410-415.   DOI
47 Copping, L.G. and Menn, J.J. 2000. Biopesticides: a review of their action, applications and efficacy. Pest Manag. Sci. 56:651-676.   DOI
48 Dayan, F.E., Duke, S.O., Sauldubois, A., Singh, N., McCurdy, C., et al. 2007. p-hydroxyphenyl- pyruvate dioxygenase is an herbicidal target for $\beta$-triketones from Leptospermum scoparium. Phytochemistry. 68:2004-2014.   DOI
49 Dayan, F.E., Ferreira, D., Wang, Y.H., Khan, I.A., Mclnroy, J.A., et al. 2008. A pathogenic fungi diphenyl ether phytotoxin targets plant enoyl (acyl carrier protein) reductase. Plant Physiol. 147:1062-1071.   DOI
50 Weaver, M.A., Boyette, C.D. and Hoagland, R.E. 2016. Rapid kudzu eradication and switchgrass establishment through herbicide, bioherbicide and integrated programmes, Biocontrol Sci. Technol. 26:640-650.   DOI
51 Won, O.J., Kang, K.S., Park, S.H., Eom, M.Y., Hwang, K.S., et al. 2015. Phytotoxicity of imazosulfuron+fentrazamide in different cultivation type of rice. Kor. J.Agri. Sci. 42(1): 15-22. (In Korean)
52 Woo, J.S., Sa, S.J., Cui, J.A., Lee, S.I., Kim, Y.H., et al. 2015. Effect of microorganisms collected from uterus of Hanwoo cattle with low conception rate on the development of IVF-derived embryos. Kor. J. Agri. Sci. 41(4):355-359. (In Korean)
53 Young, S.L. 2004. Natural product herbicides for control of annual vegetation along roadsides. Weed Technol. 18:580-587.   DOI
54 McDade, M.C. and Christians, N.E. 2000. Corn gluten meal: A natural pre-emergence herbicide: Effect on vegetable seedling survival and weed cover. Amer. J. Altern. Agr. 15:189-191.   DOI
55 Mitchell, G., Bartlett, D.W., Fraser, T.E.M., Hawkes, T.R., Holt, D.C., et al. 2001. Mesotrione: a new selective herbicide for use in maize. Pest Manag. Sci. 57:120-128.   DOI
56 Nguyen, C., Chemin, A. and Vincent, C. 2013. VVH 86 086, nouveau defanant desicant naturel affet herbicide. 22nd Conference du Columa. Journees Internationale sur la lutte les Mauvaises Herbes, Dijon, France. pp. 953-962.
57 Pallett, K.E., Cramp, S.M. and Little, J.P. 2001. Isoxaflutole: the background to its discovery and the basis of its herbicidal properties. Pest Manag. Sci. 57:29-47.
58 Park, S.H., Won, O.J., Eom, M.Y., Han, S.M., Seo, S.J., et al. 2014. Application of remote-controlled aerial application to control weeds on the Paddy Field using benzobicyclon mixtures. Kor. J. Agri. Sci. 41(2): 113-117. (In Korean)   DOI
59 Park, S.H., Heo, Y.R., Won, O.J., Eom, M.Y., Hwang, K.S., et al. 2013. Herbicidal efficacy of benzobicyclon-mixtures and carfentrazone-ethyl-mixtures in direct seeding flooded rice. Kor. J. Agri. Sci. 40(3): 183-189. (In Korean)   DOI
60 PMRA (Pest Management Regulatory Agency). 2013. Registration decision for Streptomyces acidiscables strain RL-110 T and thaxatomin a. RD2014-14, p.7.
61 Petroski, J.P. and Stanley, D.W. 2009. Natural compounds for pest and weed control. J. Agric. Food Chem. 57:8171-8179.   DOI
62 Poignant, P. 1954. Chemical structure and herbicidal activity of a group of organic acids. C. R. Chim. 239:822-824.
63 Romagni, J.G., Allen, S.N. and Dayan, F.E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303-313.   DOI
64 Steward-Wade, S., Green, M.S., Boland, G.J., Teshler, M.P., Watson, I.B., et al. 2002. Taraxacum officinale (Weber), Dandelion. pp. 44-49. In: Mason, P. G. and Huber, J.T. (Eds.). Biological Control Programms in Canada, 1981-2000, CAB International. Wallingford, UK.
65 Tateno, A. 2000. Herbicidal composition for the control of annual bluegrass. U.S. Patent 162763.
66 Tworkoski, T. 2002. Herbicide effects of essential oils. Weed Sci. 50:425-431.   DOI
67 Vaughn, S.F. and Spencer, G.F. 1991. Volatile monoterpenes inhibit potato tuber sprouting. Am. Potato. J. 68:821-831.   DOI
68 Vencill, W.K. 2002. Herbicide Handbook, 8th Ed., pp. 493. Weed Sci,, Lawrence, KS, USA.
69 Lee, S.G., Kim, J.C. and Hong, Y.G. 1994. Mass production method of Epicoccosorus strain YCSJ-112 for control of Eleocharis kuroguwai. KR Patent 9-424055.
70 Leep, D., Doricchi, L., Perez Baz, M.J., Milan, F.R. and Fernandez Chimeno, R.I. 2010. Use of thaxtomin for selective control of rice and aquatic based weeds. US Patent 031317.