• Title/Summary/Keyword: synthetic rubber

Search Result 90, Processing Time 0.028 seconds

A Study on Examination of Application in Waste Filled Land and Performance Evaluation as Waterproofing Material by the Spray Water-Soluble Rubber Asphalt (뿜칠형 수용성 고무화 아스팔트 차수재의 성능평가 및 폐기물 매립지 적용성 검토에 관한 연구)

  • 이성일;정문정;김형무;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.163-168
    • /
    • 2001
  • This study examinated the application in construction field and the development of waterproofing material system by the spray water-soluble rubber asphalt to solve the problems of synthetic polymer sheet and gio membrane(A mat sheet of Bentonite) that had been used domestic waterproofing material in advance. As the result of study, characters of study water-souble rubber asphalt are the follows; 1) The amount of water absorption was '0.06'g and the seepage quantity was '0'g in result. 2) The tensile strength was about 30.7kgf/$cm^2$ and the elongation was about 72.4% in result. 3) After reliance of temperature test had been ended, the tensile strength was about 72.4kg/$cm^2$ in low temperature and about 30.7kgf/$cm^2$ in normal temperature. 4) After acid and alkaline treatment had been ended, the tensile strength was about 19.7kgf/$cm^2$ and about 21.9kgf/$cm^2$ in result. 5) After chlorine ion treatment had been ended, the tensile strength was 28.5kgf/$cm^2$ and the elongation was 250% in result. So, this study can propose the spray water-soluble rubber asphalt to satisfy the security and durability of waste filled land.

  • PDF

CPVC Valve Tightening Torque Impact Sockets on the Leaks (CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향)

  • Lim, Chun-Ki;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, the stress applied to screw section, strain, displacement, von Mises stress, and the compression stress applied to the rubber packing for watertightness are estimated with computer simulation when the tightening torque of valve socket is in the range of $10{\sim}130N{\cdot}m$ in order to analyze the influence of valve socket screw section in accordance with the excessive tightening which is supposed to be the cause of water leakage from the synthetic resin piping for fire fighting application of sprinkler equipment, and for the sake of verifying this, adequate value of tightening torque and the value of the compression stress of rubber packing are investigated by examining the number of connected thread for each tightening torque, the deformation state of valve socket and rubber packing and conducting the water hammering test. The result of this test is expected to be utilized as the data required for revising the standard or technical criteria to prevent the water leakage of the synthetic resin piping for fire fighting application.

Effects of Silane Coupled Silica on the Pysical Properties of Synthetic Rubber Compounds (실란 커프링제로 처리된 실리카가 합성고무 배합물의 물리적 특성에 미치는 영향)

  • Lee, Seag
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 1998
  • This study was investigated on the physical properties of synthetic rubber compounds containing silica and silane copuled silica. Surface area and pore volume of silane copuled silica appeared to be low compared with those of pure silica because silane coupling agent blocks the pore of silica surface during silanization reaction. Silica with large surface area and high structure showed the short scorch time$(t_5)$ and rapid cure rate. The silane coupled silica showed the shorter scorch time and more rapid cure rate than pure silica because of the of effect of sulfur in the silane coupling agent(Si 69), The high value of $N_2SA$ minus CTAB com-pared with surface area and structure of silica showed the high 300% modulus. Also, the surface area and structure of silica did not affected the amount of PICO loss that indicate the abrasion resistance but affected the amount of cut and chip loss.

  • PDF

Cleaning Fabricated Metal Thread: A Post-treatment Stability Assessment after Artificial Deterioration and the Application of Synthetic Soil

  • Park, Hae Jin;Hwang, Minsun;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.19-31
    • /
    • 2019
  • To study the cleaning effects and post-treatment stability assessment of various methods of cleaning textiles with metal thread, six naturally-soiled historical textiles with metal thread were investigated at the Metropolitan Museum of Art, New York. Prior to the cleaning of fabricated gold, silver, and copper thread that had been glued onto a paper substrate, the artificial deterioration was carried out in a controlled environment with light(UV and daylight), and temperature and humidity factors which would weaken and damage the samples. A synthetic soil mixture was applied to the samples to imitate soil found on the historic and archaeological textiles with metal thread; the cleaning effect and post-treatment assessment were investigated by use of three textile cleaning methods: mechanical cleaning, wet cleaning, and solvent cleaning. While investigating the naturally-soiled textiles with metal thread, it was determined that the soil colors and sizes of contaminating particles of each textile were different due to the diversity of original environmental factors and conditions. After cleaning with kneaded rubber, Stoddard solvent, n-decane or n-hexane, a bright, clean effect was apparent. Kneaded rubber was successful in picking up both large and small particles, but its stickiness caused some of the metal leaf to peel off. Stoddard solvent produced a good cleaning effect, but after use of n-hexane and n-decane in the cleaning process, a white layer of residue remained on the textile's surface. Wet cleaning was not effective and the rapid humidity changes between wet and dry conditions caused the edges of the paper substrate to lose their original shape.

Evaluation of Seismic Fragility Curve of Seismically Isolated Nuclear Power Plant Structures for Artificial Synthetic Earthquakes Corresponding to Maximum-Minimum Spectrum (최대-최소 스펙트럼에 대응하는 인공합성지진에 대한 면진된 원전구조물의 지진취약도 곡선 평가)

  • Kim, Hyeon-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.89-99
    • /
    • 2019
  • In order to increase the seismic safety of nuclear power plant (NPP) structures, a technique to reduce the seismic load transmitted to the NPP structure by using a seismic isolation device such as a lead-rubber bearing has recently been actively researched. In seismic design of NPP structures, three directional (two horizontal and one vertical directions) artificial synthetic earthquakes (G0 group) corresponding to the standard design spectrum are generally used. In this study, seismic analysis was performed by using three directional artificial synthetic earthquakes (M0 group) corresponding to the maximum-minimum spectrum reflecting uncertainty of incident direction of earthquake load. The design basis earthquake (DBE) and the beyond design basis earthquakes (BDBEs are equal to 150%, 167%, and 200% DBE) of G0 and M0 earthquake groups were respectively generated for 30 sets and used for the seismic analysis. The purpose of this study is to compare seismic responses and seismic fragility curves of seismically isolated NPP structures subjected to DBE and BDBE. From the seismic fragility curves, the probability of failure of the seismic isolation system when the peak ground acceleration (PGA) is 0.5 g is about 5% for the M0 earthquake group and about 3% for the G0 earthquake group.

Self-healing Elastomers As Dream Smart Materials (꿈의 스마트 재료로서 자기치유 탄성체)

  • Kim, Il;Shin, Nam-Ho;Jo, Jung-Kyu;Hur, A-Young;Li, Haiqing;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.196-208
    • /
    • 2009
  • Sophisticated polymeric materials with 'responsive' properties are beginning to reach the market. The use of reversible, noncovalent interactions is a recurring design principle for responsive materials. Recently developed hydrogen-bonding units allow this design principle to be taken to its extreme. Supramolecular polymers, where hydrogen bonds are the only force keeping the monomers together, form materials whose (mechanical) properties respond strongly to a change in temperature or solvent. In this review, we describe some examples of hydrogen-bonded supramolecular polymers that can be utilized for self-healing materials. Synthesis of a rubber-like material that can be recycled might not seem exciting. But one that can also repeatedly repair itself at room temperature, without adhesives, really stretches the imagination. Autonomic healing materials respond without external intervention to environmental stimuli in a nonlinear and productive fashion, and have great potential for advanced engineering systems.

Physical Test and Finite Element Analysis of Elastomer for Steel Rack Tube Forming (일체형 랙 튜브 성형을 위한 고 탄성체 물성시험과 유한요소 해석)

  • Woo, C.S.;Park, H.S.;Lee, G.A.
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Rubber-pad forming process for materials such as metal in which portions of the die which act upon the material is composed of a natural or synthetic rubber or elastomer material. This makes the rubber pad forming process relatively cheap and flexible, high accuracy for small product series in particular. In this study, we carried out the physical test and finite element analysis of elastomer such as natural rubber and urethane for steel rack rube forming. The non-linear property of elastomer which are described as strain energy function are important parameter to design and evaluate of elastomer component. These are determined by material tests which are uni-axial tension and bi-axial tension. This study is concerned with simulation and investigation of the significant parameters associated with this process.

Analysis on the Dynamic Characteristics of a Rubber Mount Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무 마운트의 동특성 해석)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • In this paper, a statistical calibration method is proposed in order to identify the variability of complex modulus for a rubber material due to operational temperature and experimental/model errors. To describe temperature- and frequency-dependent material properties, a fractional derivative model and a shift factor relationship are used. A likelihood function is defined as a product of the probability density functions where experimental values lie on the model. The variation of the fractional derivative model parameters is obtained by maximizing the likelihood function. Using the proposed method, the variability of a synthetic rubber material is estimated and applied to a rubber mount problem. The dynamic characteristics of the rubber mount are calculated using a finite element model of which material properties are sampled from Monte Carlo simulation. The calculated dynamic stiffnesses show very large variation.

Natural Rubber Electrical Conduction Mechanism in High and Low Electric Fields (고전계와 저전계에서 천연고무의 전기전도기구)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-308
    • /
    • 2007
  • This work shows the experimental results obtained from ageing at a temperature of 100 C for 48, 70 and 312 h, although the application of AC electrical tension in samples and the measuring of current leakage are presented. The measurements in samples were carried out with samples prepared from the deformulated commercial materials and respectively reformulated into thin films. The obtained results showed the mechanisms of conduction of samples in low and high electric fields. It was also identified an electric tension transition showing that in low fields it prevails the Ohm's law conduction, and in high electric fields it prevails the conduction of space charge limited current (SCLC). These results can support the natural rubber formulation process having as their main objective the reducing of the mechanisms that occur under high conduction current in high electric fields, which leads the material to a dielectric breakdown. Raw Natural rubber in Brazil is extracted from rubber trees (Hevea brasiliensis) in farms in So Paulo State by using some new plantation technology in smaller spaces, with trees placed a few meters from each other. In the Amazon rain forest the rubber trees are found naturally and their spacing may be of hundreds of meters or even kilometers between them. It is necessary to research this raw material from different internationally standard clones to characterize dielectric and electric properties for industrial applications. Moreover, this natural material has a low commercial price when compared to the synthetic ones.

  • PDF

전략케이블에 쓰이는 절연재료의 변천과 발달과정

  • 구자윤
    • 전기의세계
    • /
    • v.34 no.8
    • /
    • pp.476-488
    • /
    • 1985
  • 전기공학분야의 여러다른 부분과 같이 전력케이블 분야에서도 수많은 연구와 아울러 특히 19세기후반에 전력케이블의 제작에 성공한 것은 20세기에 들어와서 케이블과 이에 관련된 모든 기술이 빠른 속도로 발달하게된 주원동력이 되었다고 보아도 과언은 아니다. 비록 19세기 후반에 고무(rubber)를 사용하여 케이블 절연 하였지만, 그이후 약 70여년이상을 Impergnated paper(오일복합수지(oil compound resin)나 오일(oil)을 종이에 스며들게한 후 그 종이를 절연재료로 이용함)를 전력케이블 절연재료로 많이 사용하여 왔다. 아울러 OF cable의 제조기술도 향상되어 현재 매우 높은 전압과 상당한 전력용량를 충족시키는 전력케이블로서 발달을 계속하고 있다. 1960년대에 들어서서 extruded polymer material 이 전력케이블의 절연재료로 쓰이게 되었는데 현저하게 주로 쓰이는 재료로 폴리에틸렌인대, 그대로 순수한 상태로 또는 어떤 처리를 하여 쓰기도 한다. 그러나 EPR(ethylene propylene rubber)도 역시 개발중에 있다. Extruded synthetic insulation을 사용한 케이블은 현재 모든 필요한 전류와 전압을 망라하여 널리 쓰이고 있으며 다른재료를 사용한 케이블 보다 설치하기에 쉽고 사용법이 비교적 간단하고, 또한 전력망(network)에서의 신뢰서이도 높은 것으로 나타나 매우 만족스런 재료로 인정받고 있다.

  • PDF