• 제목/요약/키워드: synthetic macro fiber

검색결과 13건 처리시간 0.025초

무수말레인산이 그라프트된 폴리프로필렌 분말 첨가에 따른 시멘트 모르타르와 무극성 마크로 합성섬유의 부착 특성 (Bond Properties of Nonpolar Macro Synthetic Fiber in Cement Mortar with Maleic Anhydride Grafted Polypropylene Powder)

  • 이진형;박찬기
    • 대한토목학회논문집
    • /
    • 제31권2A호
    • /
    • pp.137-143
    • /
    • 2011
  • 본 연구는 섬유보강 시멘트 모르타르에서 무수말레인산이 그라프트된 폴리프로필렌(maleic anhydride grafted polypropylene, mPP) 분말의 첨가가 무극성 마크로 합성섬유(마크로 합성섬유)의 부착특성에 미치는 효과를 평가하였다. 다양한 mPP의 첨가율(시멘트 중량의 0%, 5%, 10%, 15%, 20%, 25%, 30%)에 따른 시멘트 모르타르와 마크로 합성섬유의 부착거동을 평가하기 위하여 Dog-bone 부착시험을 수행하였다. 시멘트 모르타르내에서 마크로 합성섬유의 부착 특성(일반거동, 인발하중 및 계면인성)은 mPP의 사용량 증가할수록 증가하였다. 인발시험 후 마크로 합성섬유 표면의 미세구조 분석은 mPP의 첨가율에 따른 마찰 저항력을 평가하기 위하여 관찰하였다. mPP의 첨가율이 증가할수록 마크로 합성섬유 표면에 긁힘 현상이 증가하였다.

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

인공지반녹화 하부 누름콘크리트에 혼입되는 합성 매크로 섬유의 비율별 휨 성능 검토 (Flexural Strength Testing of Topping Concrete base of Artificial Greening Layer based on Synthetic Macro Fiber Mixture Ratio)

  • 한윤정;이정훈;송제영;장덕배;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2015
  • For the purpose of reducing defects (cracking) in topping concretes cast as artificial greening layer base, synthetic macro fibers were mixed. The flexural strength of synthetic macro fiber mixed topping concretes was tested via comparing its performance with current topping concrete. According to the results of the testing, topping concrete with adjusted mixing ratio after mixing with 1kg of synthetic macro fiber showed approximately 15% higher flexural strength compared to the current topping concrete.

  • PDF

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes

  • Koksal, Fuat;Bacanli, Cem;Benli, Ahmet;Gencel, Osman
    • Structural Engineering and Mechanics
    • /
    • 제82권1호
    • /
    • pp.93-105
    • /
    • 2022
  • The brittleness of concrete can be overcome by fiber reinforcement that controls the crack mechanisms of concrete. Corrosion-related durability issues can be prevented by synthetic fibers (SFs), while macro synthetic fibers have proven to be particularly effective to provide ductility and toughness after cracks. This experimental study has been performed to investigate the comparative flexural and mechanical behavior of four different macro-synthetic fiber-reinforced concretes (SFRCs). Two polyamide fibers (SF1 and SF2) with different aspect ratios and two different polypropylene fiber types (SF3 and SF4) were used in production of SFRCs. Four different SFRCs and reference concrete were compared for their influences on the toughness, compressive strength, elastic modulus, flexural strength, residual strength and splitting tensile strength. The outcomes of the study reveal that the flowability of reference mixture decreases after addition of SFs and the air voids of all SFRC mixtures increased with the addition of macro-synthetic fibers except SFRC2 mixture whose air content is the same as the reference mixture. The results also revealed that with the inclusion of SFs, 11.34% reduction in the cube compressive strength was noted for SFRC4 based on that of reference specimens and both reference concrete and SFRC exhibited nearly similar cylindrical compressive strength. Results illustrated that SFRC1 and SFRC4 mixtures consistently provide the highest and lowest flexural toughness values of 36.4 joule and 27.7 joule respectively. The toughness values of SFRC3 and SFRC4 are very near to each other.

나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능 (Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents)

  • 오리온;박찬기
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk;Ceren Kina;Esma Balalan
    • Advances in concrete construction
    • /
    • 제16권1호
    • /
    • pp.1-20
    • /
    • 2023
  • This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

다발형 폴리아미드섬유 보강 콘크리트의 휨거동에 관한 실험적 연구 (A Experimental Study on the Flexural Behavior of Bundle Type Polyamide Fiber Reinforced Concrete)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • 한국재난정보학회 논문집
    • /
    • 제10권1호
    • /
    • pp.61-70
    • /
    • 2014
  • 일반적으로 건설재료 용도로 많이 사용되고 있는 유기섬유 보강 콘크리트는 섬유 자체의 인장강도 및 탄성계수는 낮지만, 휨거동, 균열에 대한 저항성 및 충격저항성 등의 특성은 우수하며, 내화학성이 뛰어나고 부식의 우려가 없는 것으로 널리 알려져 있다. 최근 해외에서는 유기섬유 보강재를 터널 숏크리트와 프리캐스트 세그먼트 라이닝, 교량 슬래브 및 PC제품 분야에서 일부 활용되고 있으며, 그 종류 또한 다양하다. 본 연구에서는 다발형 폴리아미드섬유를 혼입한 콘크리트의 휨거동 특성을 ASTM C 1609 및 KS F 2566에 준하여 하중-처짐 관계를 도출하여 유기섬유 보강 콘크리트의 적용 가능성을 검토하였다.

Investigation of Fiber Distribution in Concrete Batches Discharged from Ready-Mix Truck

  • Sorensen, Christian;Berge, Egil;Nikolaisen, Eirik B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권4호
    • /
    • pp.279-287
    • /
    • 2014
  • This paper presents the findings of an investigation of the fiber content variations in concrete being discharged from a ready-mix truck at the construction site. Concrete samples were extracted from the truck drums at the beginning, middle and end of discharge. Subsequently, fibers in each sample were separated from the concrete, and weighed. Presumably, synthetic macro fibers will float towards the top, i.e. towards the drum opening, of the inclined, revolving truck-drum, while, on the other hand, steel fibers will tend to gravitate towards the lower parts of the mixer drum. Accordingly, the discharge batch, containing synthetic macro fibers, will contain a higher amount of synthetic fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content will gradually decrease further down the batch. The discharge batch of steel fiber concrete will contain fewer fibers per unit volume at the start of discharge than the average unit volume fiber content of the mix, and the content should gradually increase further down the batch. The correctness of the foregoing is partly confirmed. A certain percentage of the truck loads did not comply with the proposed requirements, mainly steel fiber reinforced batches, indicating the necessity of a code or guideline amendment. A change in the Norwegian shotcrete directive was made in 2011, based upon experimental research work (2010), which, in combination with the subsequent University of Life Sciences report (2012), constitutes the foundation of this article.