• Title/Summary/Keyword: synthetic geometry

Search Result 74, Processing Time 0.026 seconds

Attempt Frequency of Magnetization in Synthetic Antiferromagnet (인위적 반강자성체에서 자화의 시도주파수)

  • Sur, Hong-Ju;Lee, Kyung-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Solving the stochastic Landau-Lifshitz-Gilbert equation numerically, we investigate the attempt frequency of magnetization in synthetic antiferromagnet (SyAF). The attempt frequency is estimated while varying the uniaxial anisotropy constant, the energy barrier and the geometry of a magnetic layer. It is found that the attempt frequency is decreased for the same magnetic volume by increasing the asymmetry of the geometry in the high damping region. Also, even for a constant height of energy barrier, the attempt frequency can vary dramatically with uniaxial anisotropy constant.

The Fourier Analysis on DSA and P$_2$SA for Discrete-Ordinates Solutions of Neutron Transport Equations

  • Noh, Taewan
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.103-108
    • /
    • 1995
  • By applying the P$_1$ and P$_2$ equations to the operator form of a synthetic acceleration, we derive the p,-acceleration (diffusion synthetic acceleration: DSA) and P$_2$-acceleration (p$_2$SA) schemes in one dimensional slab geometry. We Fourier-analyze the derived acceleration schemes with the discrete-ordinates transport equation and showed that the DSA outperforms the P$_2$SA. These results confirm that one cannot simply assume that replacement of the DSA with a higher order approximation will lead to a better acceleration performance.

  • PDF

FINDING COSMIC SHOCKS: SYNTHETIC X-RAY ANALYSIS OF A COSMOLOGICAL SIMULATION

  • HALLMAN ERIC J.;RYU DONGSU;KANG HYESUNG;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.593-596
    • /
    • 2004
  • We introduce a method of identifying evidence of shocks in the X-ray emitting gas in clusters of galaxies. Using information from synthetic observations of simulated clusters, we do a blind search of the synthetic image plane. The locations of likely shocks found using this method closely match those of shocks identified in the simulation hydrodynamic data. Though this method assumes nothing about the geometry of the shocks, the general distribution of shocks as a function of Mach number in the cluster hydrodynamic data can be extracted via this method. Characterization of the cluster shock distribution is critical to understanding production of cosmic rays in clusters and the use of shocks as dynamical tracers.

Epipolar Geometry of Line Cameras Moving with Constant Velocity and Attitude

  • Habib, Ayman F.;Morgan, Michel F.;Jeong, Soo;Kim, Kyung-Ok
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.172-180
    • /
    • 2005
  • Image resampling according to epipolar geometry is an important prerequisite for a variety of photogrammetric tasks. Established procedures for resampling frame images according to epipolar geometry are not suitable for scenes captured by line cameras. In this paper, the mathematical model describing epipolar lines in scenes captured by line cameras moving with constant velocity and attitude is established and analyzed. The choice of this trajectory is motivated by the fact that many line cameras can be assumed to follow such a flight path during the short duration of a scene capture (especially when considering space-borne imaging platforms). Experimental results from synthetic along-track and across-track stereo-scenes are presented. For these scenes, the deviations of the resulting epipolar lines from straightness, as the camera's angular field of view decreases, are quantified and presented.

  • PDF

Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior (비선형 거동을 고려한 척추 인공추간판 보철물의 최적설계)

  • Gwon, Sang-Yeong;Kim, Hyeong-Tae;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.234-242
    • /
    • 2002
  • A shape optimal design of synthetic intervertebral disc prosthesis is performed using a three-dimensional finite element method. Geometric parameters are introduced to model the cross-sectional geometry of the intervertebral disc. It is assumed that the total strain energy in the intact intervertebral disc is minimized under the normal load conditions, as often cited in other references. To calculate the stain energy density, both the nonlinear material properties and the large deformations are taken into account. The design variables of the annulus fiber angle and the area ratio of the nucleus pulposus are calculated as 31°and 30%, respectively, which complies well with the intact disc. Thus, the same optimization procedure is applied to the design of the synthetic intervertebral disc prosthesis whose material properties are different from the intact disc. For the given synthetic material properties, the values of 67°and 24% for the fiber angle and the area ratio are obtained.

Versatile Strategies for Fabricating Polymer Nanomaterials with Controlled Size and Morphology

  • Yoon, Hyeon-Seok;Choi, Moon-Jung;Lee, Kyung-Jin;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.85-102
    • /
    • 2008
  • The development of reliable synthetic routes to polymer nanomaterials with well-defined size and morphology is a critical research topic in contemporary materials science. The ability to generate nanometer-sized polymer materials can offer unprecedented, interesting insights into the physical and chemical properties of the corresponding materials. In addition, control over shape and geometry of polymer nanoparticles affords versatile polymer nanostructures, encompassing nanospheres, core-shell nanoparticles, hollow nanoparticles, nanorods/fibers, nanotubes, and nanoporous materials. This review summarizes a diverse range of synthetic methods (broadly, hard template synthesis, soft template synthesis, and template-free synthesis) for fabricating polymer nanomaterials. The basic concepts and significant issues with respect to the synthetic strategies and tools are briefly introduced, and the examples of some of the outstanding research are highlighted. Our aim is to present a comprehensive review of research activities that concentrate on fabrication of various kinds of polymer nanoparticles.

Simulation of Bistatic Inverse Synthetic Aperture Radar Image Generation (바이스태틱 ISAR 영상 생성 시뮬레이션)

  • Han, Seung-Ku;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.451-458
    • /
    • 2014
  • This paper introduces a bistatic ISAR imaging technique. In bistatic geometry, the transmitter and receiver are placed in different locations. The monostatic ISAR is inadequate not only for obtaining images on targets approaching along the radar's line of sight, but also for stealth targets. In this paper, geometry, signal modeling as well as bistatic Doppler for bistatic ISAR are introduced to address these problems. Simulations results show bistatic ISAR images as well as monostatic ISAR images against target's moving scenarios, and analyze their differences for each scenario.

A Novel 3-D Imaging Configuration Exploiting Synthetic Aperture Ladar

  • Guo, Liang;Huang, Yinli;Li, Xiaozhen;Zeng, Xiaodong;Tang, Yu;Xing, Mengdao
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.598-603
    • /
    • 2017
  • Traditional three-dimensional (3-D) laser imaging systems are based on real aperture imaging technology, whose resolution decreases as the range increases. In this paper, we develop a novel 3-D imaging technique based on the synthetic aperture technology in which the imaging resolution is significantly improved and does not degrade with the increase of the range. We consider an imaging laser radar (ladar) system using the floodlight transmitting mode and multi-beam receiving mode. High 3-D imaging resolutions are achieved by matched filtering the linear frequency modulated (LFM) signals respectively in range, synthetic aperture along-track, and the real aperture across-track. In this paper, a novel 3-D imaging signal model is given first. Because of the motion during the transmission of a sweep, the Doppler shift induced by the continuous motion is taken into account. And then, a proper algorithm for the 3-D imaging geometry is given. Finally, simulation results validate the effectiveness of the proposed technique.

Development of Dual FDG Auto Synthesis Module (듀얼 FDG 자동합성장치 개발)

  • Jeong, Cheol-Ki;Lee, Goung-Jin;Hur, Min-Goo;Jang, Hong-Suk;Min, Young-Don
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.313-316
    • /
    • 2011
  • [$^{18}F$]FDG (2-[$^{18}F$] Fluoro-2-deoxy-D-Glucose), which is required Automated Synthetic Module for production, is most often used Radiopharmaceuticals in nuclear medicine. In this study, an Automated Synthesis Module was developed to produce FDG in two consecutive time when F-18 feds continuously by modifying a domestic FDG Automated Synthetic Module on structural geometry and control system. The results were showed that the Average Synthesis Yields on the developed Automated Synthetic Module were $45{\pm}3%$ (n=20), $50{\pm}3%$ (n=20) respectively. The Quality Control results, such as Radio TLC, Radiochemical purity, Gamma-counter, pH, LAL Test, Micro bacteria test, showed in same level with domestic [$^{18}F$]FDG Auto-Synthetic modules. Therefore, if some features were improved by considering the components life time and appearance, commercial sales can be expected because of low price and easy maintenance compared with foreign products.