• Title/Summary/Keyword: synthetic fuel

Search Result 141, Processing Time 0.029 seconds

Performance Evaluation of Free breathing Fuel Cell by using Synthetic Jet Air Blower (Synthetic Jet Air Blower를 이용한 Free Breathing 연료전지의 성능 평가)

  • Choi, Jong-Pil;Ku, Bo-Sung;Jang, Jae-Hyuk;Seo, Young-Ho;Kim, Byeong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2834-2838
    • /
    • 2008
  • An free breathing proton exchange membrane fuel cell (PEMFC) was developed. This paper presents a study of the several effect on the performance of a fuel cell such as air flow rate, opening ratio, and cathode structures. Especially, an air flow rate is critical condition to improve the fuel cell performance. In this paper, we developed a synthetic jet micro air blower to supply high stoichiometric air. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. In comparison with free convection fuel cells, the forced-convection fuel cell which equipped synthetic jet micro air blower brings higher performance and stability for long term test. Also, power consumption of the synthetic jet micro air blower is under 0.3W. The results show that the maximum power density was $188mW/cm^2$ at $400mA/cm^2$. The maximum power density was higher 40% than power density of free convection fuel cell.

  • PDF

A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures (다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구)

  • Jihyun Son;Gyuhan Bae;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.

Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber (석탄가스화 연료의 정적 예혼합 연소특성)

  • Kim Tae-Kwon;Jang Jun-Young
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

Applicability to Engine Fuel of Low Caloric Synthetic Gas from Coal Gasification (석탄가스화기기로부터 발생된 저발열량 합성가스의 엔진연료 적용 연구)

  • 장준영;김태권;유영돈;윤용승
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.595-600
    • /
    • 2003
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to a gas engine system. A commercial LPG engine is modified to use the low caloric synthetic gas from coal gasification as the gas engine fuel. The modification is focused on the fuel supplying system, which includes air flowrate adjusting orifice, gas mixer, vaporizer, preheater, regulators, and fuel tank. The electrical system and others for the alternative fuel are also redesigned and replaced. From the results of engine performance data, we have demonstrated that the engine modified by using coal gasification gas is well operated from idle to wide open throttle conditions although the engine power is somewhat reduced relative to LPG fueled engine. This paper addresses the need to determine the practical potential for such a concept and to identify further research and development efforts that may be necessary.

  • PDF

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics (모사 합성 가솔린 제조 및 분무 특성 분석 연구)

  • Jeonghyun Park;Naeun Choi;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

GTL(Gas To Liquid) Technologies Trend for Synthetic Fuel Production (합성연료 제조를 위한 GTL(Gas To Liquid) 기술동향)

  • Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.717-720
    • /
    • 2011
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean synthetic fuel technologies using biomass, especially GTL(Gas To Liquid) technology, have been greatly attracted. This paper has examined and compared the worldwide technologies trend of natural gas reforming reaction, F-T(Fisher-Tropsch) synthesis and upgrading process which are three backbones of GTL technology.

  • PDF

Development of additives for DME as a renewable energy (신재생에너지로서 DME 연료의 첨가제 개발)

  • Jang, Eunjung;Park, Cheonkyu;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Bonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.178.1-178.1
    • /
    • 2011
  • DME is generally expected to be used as a promising clean alternative fuel to diesel fuel. DME is not natural product but a synthetic product that is produced either through the dehydration of methanol or a direct synthetic from syngas. As DME has no carbon-carbon bond in its molecular structure and is an oxygenate fuel, it's combustion essentially generates no soot. DME has such cetane number of 55~60 that it can be used as a diesel engine fuel. However, DME has low lubricity but a proven method to solve the poor lubricity is by adding lubricity improver. Therefore, the aim of this study is to develop lubricity improver of DME as a transport fuel in Korea. In this study, we investigated a possibility of fatty acid ester compounds as a candidate to improve DME lubricity as compared with current lubricity improver of diesel. We also evaluated quality characteristics, storage stability of DME with lubricity additives.

  • PDF

Development of Synthetic Jet Micro Air Pump (Synthetic Jet 마이크로 에어펌프의 개발)

  • Choi, J.P.;Kim, K.S.;Seo, Y.H.;Ku, B.S.;Jang, J.H.;Kim, B.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.594-599
    • /
    • 2008
  • This paper presents a micro air pump based on the synthetic jet to supply reactant at the cathode side for micro fuel cells. The synthetic jet is a zero mass flux device that converts electrical energy into the momentum. The synthetic jet actuation is usually generated by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, orifices and PZT diaphragms. Therefore, it is very important that the design parameters are optimized because of the simple configuration. To design the synthetic jet micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. From results of numerical analysis, the micro air pump has been fabricated by the PDMS replication process. The most important design factors of the micro air pump in micro fuel cells are the small size and low power consumption. To satisfy the design targets, we used SP4423 micro chip that is high voltage output DC-AC converter to control the PZT. The SP4423 micro chips can operate from $2.2{\sim}6V$ power supply(or battery) and is capable of supplying up to 200V signals. So it is possible to make small size controller and low power consumption under 0.1W. The size of micro air pump was $16{\times}13{\times}3mm^3$ and the performance test was conducted. With a voltage of 3V at 800Hz, the air pump's flow rate was 2.4cc/min and its power consumption was only 0.15W.

Development of Synthetic-Jet based micro air pump for BOP system of mobile fuel cell (모바일 연료전지 BOP를 위한 Synthetic-Jet 기반 마이크로 에어펌프 개발)

  • Kim, K.S.;Choi, J.P.;Koo, B.S.;Jang, J.H.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.247-251
    • /
    • 2008
  • This paper presents a micro air pump actuated by PZT actuator (synthetic jet actuator) for air supply for micro fuel cells. The synthetic jet actuators are usually created by a traditional PZT-driven actuator, which consists of a small cylindrical cavity, in/outlet channel and PZT diaphragms. To design the micro air pump, a numerical analysis has been conducted for flow characteristics with respect to various geometries. A prototype of the micro air pump, with a size of $mm{\times}mm{\times}mm$, was fabricated by PDMS replication process and was conducted performance test. To control the PZT actuator, we used the SP4423 micro chips that can be amplified input voltage to reduce the controller size and the power consumption. With a voltage of 3V at 100Hz, the air pump's pumping pressure is 600pa and its power consumption is only 0.1mW.

  • PDF