• Title/Summary/Keyword: synthetic fiber

Search Result 353, Processing Time 0.025 seconds

Review of a Case of Chronic Obstructive Pulmonary Disease in Workers Exposed to Synthetic Fibers

  • Hyeon-cheol Oh;Chae-seong Lim;Jung-won Kim;Eun-seok Kim;Ji-eun Lee;Sang-cheol Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.273-279
    • /
    • 2023
  • Objectives: Objectives of this study were: 1) to introduce industrial situation and health hazards of synthetic fiber, 2) to review a case of chronic obstructive pulmonary disease in a worker exposed to synthetic fiber reported to the Korea Occupational Disease Surveillance Center, and 3) to suggest supplementary measures for the occupational health system for workers exposed to synthetic fibers. Methods: Respiratory exposure, health hazards, and exposure standards for synthetic fiber dust in Korea and other countries were reviewed. In addition, a case of chronic obstructive pulmonary disease due to exposure to nylon dust reported to the Korea Occupational Disease Surveillance Center was reviewed and summarized. Results: The worker was a 53-year-old non-smoking male who had been involved in the nylon weaving process for 26 years. He had shortness of breath from three years ago. He was diagnosed with chronic obstructive pulmonary disease. PM1.0, PM2.5, and PM10 were measured at 26.6 ㎍/m3, 48.2 ㎍/m3, and 91.7 ㎍/m3, respectively. Fiber components estimated as nylon fiber were detected in the microscopic examination of a solid sample. Conclusions: For workers exposed to synthetic fiber dust, special health examinations of the respiratory system, regular work environment measurement, and work environment management through workplace health management should be performed. It is necessary to research on health effects of synthetic fibers.

Evaluation of the Field Application of the Ready-mixed Shotcrete using the Synthetic Fiber (합성섬유를 혼입한 레디믹스트 숏크리트의 현장적용성 평가)

  • Choi, Hee-Sup;Nam, Kwan-Woo;Nam, Gi-Mok;Seo, Sin-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1536-1539
    • /
    • 2009
  • In this paper, The Ready-mixed Shotcrete which Factory with automatic production system is made Materials using synthetic fiber is evaluated the field application. Result of whole test, synthetic fiber(PP, PVA) is indicated almost equal result of steel fiber by rebound rate, compressive strength and bending test. especially, PP fiber(40mm, 12kg) is showed that bending strength and toughness is better than steel fiber, also I reason in that field application of synthetic fiber(PP, PVA) is proved.

  • PDF

Prediction of Post-cracking Behavior of Synthetic Fiber Reinforced Concrete Beams (합성섬유 보강 콘크리트 보의 후균열 거동 예측에 관한 연구)

  • 오병환;김지철;박대균;한일영;김방래;유홍종
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.587-592
    • /
    • 2002
  • Fiber reinforced concrete has been used for tunnel lining and rehabilitation of old structures. Recently, structural synthetic fiber was developed to overcome the corrosive properties of steel fibers. Fibers play a role to increase the tensile and cracking resistance of concrete structures. The Post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of the present study is to develop a realistic analysis method for post cracking behavior of synthetic fiber reinforced concrete members.

  • PDF

Flexural Strength Testing of Topping Concrete base of Artificial Greening Layer based on Synthetic Macro Fiber Mixture Ratio (인공지반녹화 하부 누름콘크리트에 혼입되는 합성 매크로 섬유의 비율별 휨 성능 검토)

  • Han, Yoon Jung;Lee, Jung Hun;Song, Je Young;Jang, Duk Bae;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.38-39
    • /
    • 2015
  • For the purpose of reducing defects (cracking) in topping concretes cast as artificial greening layer base, synthetic macro fibers were mixed. The flexural strength of synthetic macro fiber mixed topping concretes was tested via comparing its performance with current topping concrete. According to the results of the testing, topping concrete with adjusted mixing ratio after mixing with 1kg of synthetic macro fiber showed approximately 15% higher flexural strength compared to the current topping concrete.

  • PDF

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

Optimum Geometry Factor of Structural Synthetic Fibers (구조용 합성섬유의 최적형상함수 결정)

  • 원종필;임동휘;박찬기;한일영;김방래
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.474-482
    • /
    • 2002
  • The purpose of the study is to establish an optimum geometry and optimum geometry factor through bond test of a structural synthetic fiber, which fully utilizes matrix anchoring without fiber fracturing with the maximum pullout resistance. Seven deformed structural synthetic fibers with widely different geometries were investigated and pullout test was conducted. Included parameters are seven different types of fiber and two of mortar matrixes. The test result shows that the crimped type structural synthetic fiber is significant improvement in the interface toughness(pullout energy) and pullout load. The pullout test was performed with various size of crimped type structural synthetic fiber in order to invest optimum geometry factor, In the basis of the test results, optimum geometry factor is established such as D=b$^{{\alpha}0{\alpha}}$h$^{λ{\beta}}$.

Evaluating the Mechanical Properties of Fiber Yarns for Developing Synthetic Fiber Chains

  • Kim, Kyeongsoo;Kim, Taewan;Kim, Namhun;Kim, Dokyoun;Kang, Yongjun;Kim, Seonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • In this study, three types of synthetic fiber materials were evaluated, namely, DM20, SK78, and T147, to replace steel chains in shipbuilding and offshore fields with fiber chains as there is increasing demand for chains with lighter weights and improved usabilities. The strength and quasi-static stiffness were analyzed to select suitable yarns for the fiber chains. The durability of the yarn was evaluated by performing a 3-T (time to rupture) test as a specific tension level. The results of the experiment revealed excellent dynamic stiffness in DM20 and highest values of the windward and leeward stiffness in T147. 3-T linear design characteristic curves for a specific tension level were derived for the three types of fiber materials. The findings of this study can provide insights for improving strength and durability in fiber chain design.

A study on evaluation of flexural toughness of synthetic fiber reinforced shotcrete (구조용 합성섬유 보강 숏크리트 휨인성 평가에 관한 연구)

  • Moon, Kyoung-Sun;Kim, Seog-Jin;Kim, Yeon-Deok;Min, Byeong-Heon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.433-452
    • /
    • 2019
  • This study deals with shotcrete reinforcing performance according to the amount of synthetic fiber (PP fiber) and proper evaluation method. The shotcrete compressive strength, flexural strength and flexural toughness were tested by setting the mixing amounts of steel fiber ($37.0kg/m^3$) and synthetic fiber (PP fiber) as parameters ($5.0kg/m^3$, $7.0kg/m^3$ and $9.0kg/m^3$). Particularly, circular panel flexural toughness test (Road and Traffic Authority, RTA) was performed to evaluate the shotcrete energy absorption capacity. As a result, the compressive strength and the bending strength of the steel fiber reinforced shotcrete were large, but the flexural toughness of the synthetic fibe (PP fiber) reinforced shotcrete was large. Therefore, synthetic fiber (PP fiber) reinforced shotcrete is considered to have a reinforcing effect comparable to that of steel fiber reinforced shotcrete. Analysis of the relationship between the flexural toughness and the energy absorption capacity of synthetic fiber (PP fiber) reinforced shotcrete revealed that the energy absorbing ability is exhibited at a flexural toughness lower than the allowable standard (3.0 MPa). (Class A: 2.55 MPa = 202J, Class B: 2.72 MPa = 282J, Class C: 3.07 MPa = 403J). As a result of this study, it can be concluded that the actual shotcrete support performance can be evaluated by evaluating the support performance of the shotcrete measured at less than the allowable standard (3.0 MPa) at the actual tunnel site.

Pullout and Flexural Performance of Structural Synthetic Fibers by Geometry and Sectional Area Change (구조용 합성섬유의 형상 및 단면적 변호에 따른 부착 및 휨 성능)

  • Won, Jong-Pil;Back, Chul-Woo;Park, Chan-Gi;Han, Il-Yeong;Kim, Bang-Lae
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.643-649
    • /
    • 2003
  • The purpose of this study were evaluated to flexural and bond performance by sectional area and geometry change through bond and flexural test of a structural synthetic fiber. Six deformed structural synthetic fibers were investigated and pullout and flexural test was conducted. Included parameters is three different geometries of fiber and two of fiber sectional area. The test result shows that the cycles and amplitude of structural synthetic fiber increased, pullout load and pullout fracture energy decreased and flexural strength increased, if sectional area is same. The sectional area increased, pullout load and pullout fracture energy increased and flexural strength decreased, if cycles and amplitude of structural synthetic fiber is same. Based on test results, structural performance of the concrete could know that is influence by pullout performance of fiber as well as various factor (fiber number, material properties etc).

A Study On Paper Sludge - Synthetic Fiber - Wood Fiber Composites (제지 슬러지 - 합성 섬유 - 목섬유 복합재의 개발)

  • Lee, Phil-Woo;Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The aim of this research was to investigate the manufacturing possibility of the paper sludge-synthetic fiber-wood fiber composite. Three levels of the formulation of paper sludge, synthetic fiber and wood fiber (5:5:90, 15:15:70, 25:25:50), two types of adhesive (PMDI, urea-formaldehyde resin) and three levels of density(0.7, 0.8, 0.9) were designed. From the test result, composites with similar or better properties, when compared with commercial fiberboard, appeared to be possible by the addition of up to 30~50% paper sludge and synthetic fiber into wood fiber.