• Title/Summary/Keyword: synthetic approaches

Search Result 158, Processing Time 0.03 seconds

Graphene Oxide as a Novel Nanoplatform for Direct Hybridization of Graphene-SnO2

  • Park, Hun;Han, Tae Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3269-3273
    • /
    • 2013
  • Graphene oxide (GO) has been of particular interest because it provides unique properties due to its high surface area, chemical functionality and ease of mass production. GO is produced by chemical exfoliation of graphite and is decorated with oxygen-containing groups such as phenol hydroxyl, epoxide groups and ionizable carboxylic acid groups. Due to the presence of those functional groups, GO can be utilized as a novel platform for hybrid nanocomposites in chemical synthetic approaches. In this work, GO-$SnO_2$ nanocomposites have been prepared through the spontaneous formation of molecular hybrids. When $SnO_2$ precursor solution and GO suspension were simply mixed, $Sn^{2+}$ was spontaneously formed into $SnO_2$ nanoparticles upon the deoxygenation of GO. Through further chemical reduction by adding hydrazine, reduced GO-$SnO_2$ hybrid was finally created. Our investigation for the electrocapacitive properties of hybrid electrode showed the enhanced performance (389 F/g), compared with rGO-only electrode (241 F/g). Our approach offers a scalable, robust synthetic route to prepare graphene-based nanocomposites for supercapacitor electrode via spontaneous hybridization.

Speaker Tracking Using Eigendecomposition and an Index Tree of Reference Models

  • Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.741-751
    • /
    • 2011
  • This paper focuses on online speaker tracking for telephone conversations and broadcast news. Since the online applicability imposes some limitations on the tracking strategy, such as data insufficiency, a reliable approach should be applied to compensate for this shortage. In this framework, a set of reference speaker models are used as side information to facilitate online tracking. To improve the indexing accuracy, adaptation approaches in eigenvoice decomposition space are proposed in this paper. We believe that the eigenvoice adaptation techniques would help to embed the speaker space in the models and hence enrich the generality of the selected speaker models. Also, an index structure of the reference models is proposed to speed up the search in the model space. The proposed framework is evaluated on 2002 Rich Transcription Broadcast News and Conversational Telephone Speech corpus as well as a synthetic dataset. The indexing errors of the proposed framework on telephone conversations, broadcast news, and synthetic dataset are 8.77%, 9.36%, and 12.4%, respectively. Using the index tree structure approach, the run time of the proposed framework is improved by 22%.

The ensemble approach in comparison with the diverse feature selection techniques for estimating NPPs parameters using the different learning algorithms of the feed-forward neural network

  • Moshkbar-Bakhshayesh, Khalil
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3944-3951
    • /
    • 2021
  • Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.

Prediction Model for Gastric Cancer via Class Balancing Techniques

  • Danish, Jamil ;Sellappan, Palaniappan;Sanjoy Kumar, Debnath;Muhammad, Naseem;Susama, Bagchi ;Asiah, Lokman
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.53-63
    • /
    • 2023
  • Many researchers are trying hard to minimize the incidence of cancers, mainly Gastric Cancer (GC). For GC, the five-year survival rate is generally 5-25%, but for Early Gastric Cancer (EGC), it is almost 90%. Predicting the onset of stomach cancer based on risk factors will allow for an early diagnosis and more effective treatment. Although there are several models for predicting stomach cancer, most of these models are based on unbalanced datasets, which favours the majority class. However, it is imperative to correctly identify cancer patients who are in the minority class. This research aims to apply three class-balancing approaches to the NHS dataset before developing supervised learning strategies: Oversampling (Synthetic Minority Oversampling Technique or SMOTE), Undersampling (SpreadSubsample), and Hybrid System (SMOTE + SpreadSubsample). This study uses Naive Bayes, Bayesian Network, Random Forest, and Decision Tree (C4.5) methods. We measured these classifiers' efficacy using their Receiver Operating Characteristics (ROC) curves, sensitivity, and specificity. The validation data was used to test several ways of balancing the classifiers. The final prediction model was built on the one that did the best overall.

Hypoxia Differentially Affects Chondrogenic Differentiation of Progenitor Cells from Different Origins

  • Mira Hammad;Alexis Veyssiere;Sylvain Leclercq;Vincent Patron;Catherine Bauge;Karim Boumediene
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.304-314
    • /
    • 2023
  • Background and Objectives: Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results: In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions: We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.

Enhancing 3D Excavator Pose Estimation through Realism-Centric Image Synthetization and Labeling Technique

  • Tianyu Liang;Hongyang Zhao;Seyedeh Fatemeh Saffari;Daeho Kim
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1065-1072
    • /
    • 2024
  • Previous approaches to 3D excavator pose estimation via synthetic data training utilized a single virtual excavator model, low polygon objects, relatively poor textures, and few background objects, which led to reduced accuracy when the resulting models were tested on differing excavator types and more complex backgrounds. To address these limitations, the authors present a realism-centric synthetization and labeling approach that synthesizes results with improved image quality, more detailed excavator models, additional excavator types, and complex background conditions. Additionally, the data generated includes dense pose labels and depth maps for the excavator models. Utilizing the realism-centric generation method, the authors achieved significantly greater image detail, excavator variety, and background complexity for potentially improved labeling accuracy. The dense pose labels, featuring fifty points instead of the conventional four to six, could allow inferences to be made from unclear excavator pose estimates. The synthesized depth maps could be utilized in a variety of DNN applications, including multi-modal data integration and object detection. Our next step involves training and testing DNN models that would quantify the degree of accuracy enhancement achieved by increased image quality, excavator diversity, and background complexity, helping lay the groundwork for broader application of synthetic models in construction robotics and automated project management.

Comparisons of ISAR Imaging Methods for Maritime Targets with Real Measured Radar Data (해상 표적의 실제 레이다 측정 데이터를 이용한 ISAR 영상 형성 기법 성능 비교)

  • Kang, Byung-Soo;Lee, Myung-Jun;Ryu, Bo-Hyun;Baek, Jin-Hyeok;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.740-748
    • /
    • 2017
  • In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.

Sensitivity Analysis of Excavator Activity Recognition Performance based on Surveillance Camera Locations

  • Yejin SHIN;Seungwon SEO;Choongwan KOO
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1282-1282
    • /
    • 2024
  • Given the widespread use of intelligent surveillance cameras at construction sites, recent studies have introduced vision-based deep learning approaches. These studies have focused on enhancing the performance of vision-based excavator activity recognition to automatically monitor productivity metrics such as activity time and work cycle. However, acquiring a large amount of training data, i.e., videos captured from actual construction sites, is necessary for developing a vision-based excavator activity recognition model. Yet, complexities of dynamic working environments and security concerns at construction sites pose limitations on obtaining such videos from various surveillance camera locations. Consequently, this leads to performance degradation in excavator activity recognition models, reducing the accuracy and efficiency of heavy equipment productivity analysis. To address these limitations, this study aimed to conduct sensitivity analysis of excavator activity recognition performance based on surveillance camera location, utilizing synthetic videos generated from a game-engine-based virtual environment (Unreal Engine). Various scenarios for surveillance camera placement were devised, considering horizontal distance (20m, 30m, and 50m), vertical height (3m, 6m, and 10m), and horizontal angle (0° for front view, 90° for side view, and 180° for backside view). Performance analysis employed a 3D ResNet-18 model with transfer learning, yielding approximately 90.6% accuracy. Main findings revealed that horizontal distance significantly impacted model performance. Overall accuracy decreased with increasing distance (76.8% for 20m, 60.6% for 30m, and 35.3% for 50m). Particularly, videos with a 20m horizontal distance (close distance) exhibited accuracy above 80% in most scenarios. Moreover, accuracy trends in scenarios varied with vertical height and horizontal angle. At 0° (front view), accuracy mostly decreased with increasing height, while accuracy increased at 90° (side view) with increasing height. In addition, limited feature extraction for excavator activity recognition was found at 180° (backside view) due to occlusion of the excavator's bucket and arm. Based on these results, future studies should focus on enhancing the performance of vision-based recognition models by determining optimal surveillance camera locations at construction sites, utilizing deep learning algorithms for video super resolution, and establishing large training datasets using synthetic videos generated from game-engine-based virtual environments.

Optimized Structures with Hop Constraints for Web Information Retrieval (Hop 제약조건이 고려된 최적화 웹정보검색)

  • Lee, Woo-Key;Kim, Ki-Baek;Lee, Hwa-Ki
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.4
    • /
    • pp.63-82
    • /
    • 2008
  • The explosively growing attractiveness of the Web is commencing significant demands for a structuring analysis on various web objects. The larger the substantial number of web objects are available, the more difficult for the clients(i.e. common web users and web robots) and the servers(i.e. Web search engine) to retrieve what they really want. We have in mind focusing on the structure of web objects by introducing optimization models for more convenient and effective information retrieval. For this purpose, we represent web objects and hyperlinks as a directed graph from which the optimal structures are derived in terms of rooted directed spanning trees and Top-k trees. Computational experiments are executed for synthetic data as well as for real web sites' domains so that the Lagrangian Relaxation approaches have exploited the Top-k trees and Hop constraint resolutions. In the experiments, our methods outperformed the conventional approaches so that the complex web graph can successfully be converted into optimal-structured ones within a reasonable amount of computation time.

Texture Comparison with an Orientation Matching Scheme

  • Nguyen, Cao Truong Hai;Kim, Do-Yeon;Park, Hyuk-Ro
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.389-398
    • /
    • 2012
  • Texture is an important visual feature for image analysis. Many approaches have been proposed to model and analyze texture features. Although these approaches significantly contribute to various image-based applications, most of these methods are sensitive to the changes in the scale and orientation of the texture pattern. Because textures vary in scale and orientations frequently, this easily leads to pattern mismatching if the features are compared to each other without considering the scale and/or orientation of textures. This paper suggests an Orientation Matching Scheme (OMS) to ease the problem of mismatching rotated patterns. In OMS, a pair of texture features will be compared to each other at various orientations to identify the best matched direction for comparison. A database including rotated texture images was generated for experiments. A synthetic retrieving experiment was conducted on the generated database to examine the performance of the proposed scheme. We also applied OMS to the similarity computation in a K-means clustering algorithm. The purpose of using K-means is to examine the scheme exhaustively in unpromising conditions, where initialized seeds are randomly selected and algorithms work heuristically. Results from both types of experiments show that the proposed OMS can help improve the performance when dealing with rotated patterns.