Graphene oxide (GO) has been of particular interest because it provides unique properties due to its high surface area, chemical functionality and ease of mass production. GO is produced by chemical exfoliation of graphite and is decorated with oxygen-containing groups such as phenol hydroxyl, epoxide groups and ionizable carboxylic acid groups. Due to the presence of those functional groups, GO can be utilized as a novel platform for hybrid nanocomposites in chemical synthetic approaches. In this work, GO-$SnO_2$ nanocomposites have been prepared through the spontaneous formation of molecular hybrids. When $SnO_2$ precursor solution and GO suspension were simply mixed, $Sn^{2+}$ was spontaneously formed into $SnO_2$ nanoparticles upon the deoxygenation of GO. Through further chemical reduction by adding hydrazine, reduced GO-$SnO_2$ hybrid was finally created. Our investigation for the electrocapacitive properties of hybrid electrode showed the enhanced performance (389 F/g), compared with rGO-only electrode (241 F/g). Our approach offers a scalable, robust synthetic route to prepare graphene-based nanocomposites for supercapacitor electrode via spontaneous hybridization.
Moattar, Mohammad Hossein;Homayounpour, Mohammad Mehdi
ETRI Journal
/
v.33
no.5
/
pp.741-751
/
2011
This paper focuses on online speaker tracking for telephone conversations and broadcast news. Since the online applicability imposes some limitations on the tracking strategy, such as data insufficiency, a reliable approach should be applied to compensate for this shortage. In this framework, a set of reference speaker models are used as side information to facilitate online tracking. To improve the indexing accuracy, adaptation approaches in eigenvoice decomposition space are proposed in this paper. We believe that the eigenvoice adaptation techniques would help to embed the speaker space in the models and hence enrich the generality of the selected speaker models. Also, an index structure of the reference models is proposed to speed up the search in the model space. The proposed framework is evaluated on 2002 Rich Transcription Broadcast News and Conversational Telephone Speech corpus as well as a synthetic dataset. The indexing errors of the proposed framework on telephone conversations, broadcast news, and synthetic dataset are 8.77%, 9.36%, and 12.4%, respectively. Using the index tree structure approach, the run time of the proposed framework is improved by 22%.
Several reasons such as no free lunch theorem indicate that there is not a universal Feature selection (FS) technique that outperforms other ones. Moreover, some approaches such as using synthetic dataset, in presence of large number of FS techniques, are very tedious and time consuming task. In this study to tackle the issue of dependency of estimation accuracy on the selected FS technique, a methodology based on the heterogeneous ensemble is proposed. The performance of the major learning algorithms of neural network (i.e. the FFNN-BR, the FFNN-LM) in combination with the diverse FS techniques (i.e. the NCA, the F-test, the Kendall's tau, the Pearson, the Spearman, and the Relief) and different combination techniques of the heterogeneous ensemble (i.e. the Min, the Median, the Arithmetic mean, and the Geometric mean) are considered. The target parameters/transients of Bushehr nuclear power plant (BNPP) are examined as the case study. The results show that the Min combination technique gives the more accurate estimation. Therefore, if the number of FS techniques is m and the number of learning algorithms is n, by the heterogeneous ensemble, the search space for acceptable estimation of the target parameters may be reduced from n × m to n × 1. The proposed methodology gives a simple and practical approach for more reliable and more accurate estimation of the target parameters compared to the methods such as the use of synthetic dataset or trial and error methods.
International Journal of Computer Science & Network Security
/
v.23
no.1
/
pp.53-63
/
2023
Many researchers are trying hard to minimize the incidence of cancers, mainly Gastric Cancer (GC). For GC, the five-year survival rate is generally 5-25%, but for Early Gastric Cancer (EGC), it is almost 90%. Predicting the onset of stomach cancer based on risk factors will allow for an early diagnosis and more effective treatment. Although there are several models for predicting stomach cancer, most of these models are based on unbalanced datasets, which favours the majority class. However, it is imperative to correctly identify cancer patients who are in the minority class. This research aims to apply three class-balancing approaches to the NHS dataset before developing supervised learning strategies: Oversampling (Synthetic Minority Oversampling Technique or SMOTE), Undersampling (SpreadSubsample), and Hybrid System (SMOTE + SpreadSubsample). This study uses Naive Bayes, Bayesian Network, Random Forest, and Decision Tree (C4.5) methods. We measured these classifiers' efficacy using their Receiver Operating Characteristics (ROC) curves, sensitivity, and specificity. The validation data was used to test several ways of balancing the classifiers. The final prediction model was built on the one that did the best overall.
Mira Hammad;Alexis Veyssiere;Sylvain Leclercq;Vincent Patron;Catherine Bauge;Karim Boumediene
International Journal of Stem Cells
/
v.16
no.3
/
pp.304-314
/
2023
Background and Objectives: Ear cartilage malformations are commonly encountered problems in reconstructive surgery, since cartilage has low self-regenerating capacity. Malformations that impose psychological and social burden on one's life are currently treated using ear prosthesis, synthetic implants or autologous flaps from rib cartilage. These approaches are challenging because not only they request high surgical expertise, but also they lack flexibility and induce severe donor-site morbidity. Through the last decade, tissue engineering gained attention where it aims at regenerating human tissues or organs in order to restore normal functions. This technique consists of three main elements, cells, growth factors, and above all, a scaffold that supports cells and guides their behavior. Several studies have investigated different scaffolds prepared from both synthetic or natural materials and their effects on cellular differentiation and behavior. Methods and Results: In this study, we investigated a natural scaffold (alginate) as tridimensional hydrogel seeded with progenitors from different origins such as bone marrow, perichondrium and dental pulp. In contact with the scaffold, these cells remained viable and were able to differentiate into chondrocytes when cultured in vitro. Quantitative and qualitative results show the presence of different chondrogenic markers as well as elastic ones for the purpose of ear cartilage, upon different culture conditions. Conclusions: We confirmed that auricular perichondrial cells outperform other cells to produce chondrogenic tissue in normal oxygen levels and we report for the first time the effect of hypoxia on these cells. Our results provide updates for cartilage engineering for future clinical applications.
Tianyu Liang;Hongyang Zhao;Seyedeh Fatemeh Saffari;Daeho Kim
International conference on construction engineering and project management
/
2024.07a
/
pp.1065-1072
/
2024
Previous approaches to 3D excavator pose estimation via synthetic data training utilized a single virtual excavator model, low polygon objects, relatively poor textures, and few background objects, which led to reduced accuracy when the resulting models were tested on differing excavator types and more complex backgrounds. To address these limitations, the authors present a realism-centric synthetization and labeling approach that synthesizes results with improved image quality, more detailed excavator models, additional excavator types, and complex background conditions. Additionally, the data generated includes dense pose labels and depth maps for the excavator models. Utilizing the realism-centric generation method, the authors achieved significantly greater image detail, excavator variety, and background complexity for potentially improved labeling accuracy. The dense pose labels, featuring fifty points instead of the conventional four to six, could allow inferences to be made from unclear excavator pose estimates. The synthesized depth maps could be utilized in a variety of DNN applications, including multi-modal data integration and object detection. Our next step involves training and testing DNN models that would quantify the degree of accuracy enhancement achieved by increased image quality, excavator diversity, and background complexity, helping lay the groundwork for broader application of synthetic models in construction robotics and automated project management.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.28
no.9
/
pp.740-748
/
2017
In this paper, we compared performance of conventional inverse synthetic aperture radar(ISAR) imaging methods for maritime target with real data measured by X-band radar. Following conventional approaches were used for performance comparisons: 1) range instantaneous Doppler(RID) method, 2) range Doppler(RD) processing with phase adjustment, and 3) RD processing with prominent point processing(PPP). It is noteworthy that the comparison results have significance of providing basic concept to establish ISAR imaging frame work for maritime targets.
International conference on construction engineering and project management
/
2024.07a
/
pp.1282-1282
/
2024
Given the widespread use of intelligent surveillance cameras at construction sites, recent studies have introduced vision-based deep learning approaches. These studies have focused on enhancing the performance of vision-based excavator activity recognition to automatically monitor productivity metrics such as activity time and work cycle. However, acquiring a large amount of training data, i.e., videos captured from actual construction sites, is necessary for developing a vision-based excavator activity recognition model. Yet, complexities of dynamic working environments and security concerns at construction sites pose limitations on obtaining such videos from various surveillance camera locations. Consequently, this leads to performance degradation in excavator activity recognition models, reducing the accuracy and efficiency of heavy equipment productivity analysis. To address these limitations, this study aimed to conduct sensitivity analysis of excavator activity recognition performance based on surveillance camera location, utilizing synthetic videos generated from a game-engine-based virtual environment (Unreal Engine). Various scenarios for surveillance camera placement were devised, considering horizontal distance (20m, 30m, and 50m), vertical height (3m, 6m, and 10m), and horizontal angle (0° for front view, 90° for side view, and 180° for backside view). Performance analysis employed a 3D ResNet-18 model with transfer learning, yielding approximately 90.6% accuracy. Main findings revealed that horizontal distance significantly impacted model performance. Overall accuracy decreased with increasing distance (76.8% for 20m, 60.6% for 30m, and 35.3% for 50m). Particularly, videos with a 20m horizontal distance (close distance) exhibited accuracy above 80% in most scenarios. Moreover, accuracy trends in scenarios varied with vertical height and horizontal angle. At 0° (front view), accuracy mostly decreased with increasing height, while accuracy increased at 90° (side view) with increasing height. In addition, limited feature extraction for excavator activity recognition was found at 180° (backside view) due to occlusion of the excavator's bucket and arm. Based on these results, future studies should focus on enhancing the performance of vision-based recognition models by determining optimal surveillance camera locations at construction sites, utilizing deep learning algorithms for video super resolution, and establishing large training datasets using synthetic videos generated from game-engine-based virtual environments.
Journal of the Korean Operations Research and Management Science Society
/
v.33
no.4
/
pp.63-82
/
2008
The explosively growing attractiveness of the Web is commencing significant demands for a structuring analysis on various web objects. The larger the substantial number of web objects are available, the more difficult for the clients(i.e. common web users and web robots) and the servers(i.e. Web search engine) to retrieve what they really want. We have in mind focusing on the structure of web objects by introducing optimization models for more convenient and effective information retrieval. For this purpose, we represent web objects and hyperlinks as a directed graph from which the optimal structures are derived in terms of rooted directed spanning trees and Top-k trees. Computational experiments are executed for synthetic data as well as for real web sites' domains so that the Lagrangian Relaxation approaches have exploited the Top-k trees and Hop constraint resolutions. In the experiments, our methods outperformed the conventional approaches so that the complex web graph can successfully be converted into optimal-structured ones within a reasonable amount of computation time.
Texture is an important visual feature for image analysis. Many approaches have been proposed to model and analyze texture features. Although these approaches significantly contribute to various image-based applications, most of these methods are sensitive to the changes in the scale and orientation of the texture pattern. Because textures vary in scale and orientations frequently, this easily leads to pattern mismatching if the features are compared to each other without considering the scale and/or orientation of textures. This paper suggests an Orientation Matching Scheme (OMS) to ease the problem of mismatching rotated patterns. In OMS, a pair of texture features will be compared to each other at various orientations to identify the best matched direction for comparison. A database including rotated texture images was generated for experiments. A synthetic retrieving experiment was conducted on the generated database to examine the performance of the proposed scheme. We also applied OMS to the similarity computation in a K-means clustering algorithm. The purpose of using K-means is to examine the scheme exhaustively in unpromising conditions, where initialized seeds are randomly selected and algorithms work heuristically. Results from both types of experiments show that the proposed OMS can help improve the performance when dealing with rotated patterns.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.